A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Transfer Learning-Based Classifier to Automate the Extraction of False X-Ray Images From Hospital's Database. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: During preclinical training, dental students take radiographs of acrylic (plastic) blocks containing extracted patient teeth. With the digitisation of medical records, a central archiving system was created to store and retrieve all x-ray images, regardless of whether they were images of teeth on acrylic blocks, or those from patients. In the early stage of the digitisation process, and due to the immaturity of the data management system, numerous images were mixed up and stored in random locations within a unified archiving system, including patient record files. Filtering out and expunging the undesired training images is imperative as manual searching for such images is problematic. Hence the aim of this stidy was to differentiate intraoral images from artificial images on acrylic blocks.

Methods: An artificial intelligence (AI) solution to automatically differentiate between intraoral radiographs taken of patients and those taken of acrylic blocks was utilised in this study. The concept of transfer learning was applied to a dataset provided by a Dental Hospital.

Results: An accuracy score, F1 score, and a recall score of 98.8%, 99.2%, and 100%, respectively, were achieved using a VGG16 pre-trained model. These results were more sensitive compared to those obtained initally using a baseline model with 96.5%, 97.5%, and 98.9% accuracy score, F1 score, and a recall score respectively.

Conclusions: The proposed system using transfer learning was able to accurately identify "fake" radiographs images and distinguish them from the real intraoral images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551570PMC
http://dx.doi.org/10.1016/j.identj.2024.08.002DOI Listing

Publication Analysis

Top Keywords

images
10
x-ray images
8
archiving system
8
acrylic blocks
8
differentiate intraoral
8
intraoral images
8
transfer learning
8
accuracy score
8
score score
8
score recall
8

Similar Publications