98%
921
2 minutes
20
The direct coupling of light harvesting and charge storage in a single material opens new avenues to light storing devices. Here we demonstrate the decoupling of light and dark reactions in the two-dimensional layered niobium tungstate (TBA)(NbWO) for on-demand hydrogen evolution and solar battery energy storage. Light illumination drives Li/H photointercalation into the (TBA)(NbWO) photoanode, leading to small polaron formation assisted by structural distortions on the WO sublattice, along with a light-induced decrease in material resistance over 2 orders of magnitude compared to the dark. The photogenerated electrons can be extracted on demand to produce solar hydrogen upon the addition of a Pt catalyst. Alternatively, they can be stored for over 20 h under oxygen-free conditions after 365 nm UV illumination for only 10 min, thus featuring a solar battery anode with promising capacity and long-term stability. The optoionic effects described herein offer new insights to overcome the intermittency of solar irradiation, while inspiring applications at the interface of solar energy conversion and energy storage, including solar batteries, "dark" photocatalysis, solar battolyzers, and photomemory devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421010 | PMC |
http://dx.doi.org/10.1021/jacs.4c04140 | DOI Listing |
eNeuro
September 2025
Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210.
Cancer patients experience circadian rhythm disruptions during and after chemotherapy that can contribute to debilitating side effects. It is unknown how chemotherapy mediates circadian disruptions, and specifically the extent to which these disruptions occur at the level of the principal clock, the suprachiasmatic nuclei (SCN) of the hypothalamus. In the present study, we assessed how the commonly used chemotherapeutic, paclitaxel, impacts the SCN molecular clock and SCN-dependent behavioral adaptations to circadian challenges in female mice.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Disordered rock-salt LiVO (DRX-LVO) anode exhibits distinctive 3D Li percolation transport networks, which offers the unique advantage for ultra-charging. However, the existing chemical lithiation preparation routes not only pose safety risks due to the use of highly reactive reagents but also inevitably result in products with poor crystallinity. Investigating the origin, impact, and strategies for crystallinity degradation is pivotal for advancing the industrialization of chemical lithiation.
View Article and Find Full Text PDFNat Chem
September 2025
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Many subcellular compartments are biomolecular condensates made of multiple components, often including several distinct proteins and nucleic acids. However, current tools to measure condensate composition are limited and cannot capture this complexity quantitatively because they either require fluorescent labels, which can perturb composition, or can distinguish only one or two components. Here we describe a label-free method based on quantitative phase imaging and analysis of tie-lines and refractive index to measure the composition of reconstituted condensates with multiple components.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China.
Constructing dual single-atom catalysts with distinct electronic structures holds significance for the design of catalytic active centers, yet it remains highly challenging. Here, a novel light-induced approach was created to construct Ni and Ni dual single-atom sites on ZnIn₂S₄ nanosheets (Ni-Ni/ZIS) for the photocatalytic reduction of CO₂. Characterizations and density functional theory (DFT) calculations results indicate that Ni and Ni single-atom sites can be selectively anchored in the Zn vacancies and lattice interstitials on the surface of ZIS, respectively.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China; School of Materials Science and Engineering, Shanghai Dianji University, Shanghai 201306, PR China. Electronic address:
The decoupling of thermoelectric performance parameters to coordinately optimize power factor (PF) and figure of merit (ZT) remains a critical challenge. Aerogels are valued for their low thermal conductivity and light weight; however, the lower electrical properties also lead to poor ZT values that affect their practical use. Herein, we implement a directional assembly strategy integrating Te nanowires (Te NWs) with single-walled carbon nanotubes (SWCNTs) to construct a three-dimensional interwoven network.
View Article and Find Full Text PDF