98%
921
2 minutes
20
Motivation: Complex structural variants (SVs) are genomic rearrangements that involve multiple segments of DNA. They contribute to human diversity and have been shown to cause Mendelian disease. Nevertheless, our abilities to analyse complex SVs are very limited. As opposed to deletions and other canonical types of SVs, there are no established tools that have explicitly been designed for analysing complex SVs.
Results: Here, we describe a new computational approach that we specifically designed for genotyping complex SVs in short-read sequenced genomes. Given a variant description, our approach computes genotype-specific probability distributions for observing aligned read pairs with a wide range of properties. Subsequently, these distributions can be used to efficiently determine the most likely genotype for any set of aligned read pairs observed in a sequenced genome. In addition, we use these distributions to compute a genotyping difficulty for a given variant, which predicts the amount of data needed to achieve a reliable call. Careful evaluation confirms that our approach outperforms other genotypers by making reliable genotype predictions across both simulated and real data. On up to 7829 human genomes, we achieve high concordance with population-genetic assumptions and expected inheritance patterns. On simulated data, we show that precision correlates well with our prediction of genotyping difficulty. This together with low memory and time requirements makes our approach well-suited for application in biomedical studies involving small to very large numbers of short-read sequenced genomes.
Availability And Implementation: Source code is available at https://github.com/kehrlab/Complex-SV-Genotyping.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373317 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae391 | DOI Listing |
Front Plant Sci
August 2025
Fruit Research Institute, Čačak, Serbia.
The Balkan Peninsula is a European biodiversity hotspot, home to 6,500 native vascular plant species, many of which are endemic. The region has diverse range of climates and complex topography, creating conditions that suit many woody ornamental, fruit, and forest species. Nevertheless, climate change, habitat destruction, invasive species, plant diseases, and agricultural practices threaten natural ecosystems and cultivated species.
View Article and Find Full Text PDFAm J Hum Genet
September 2025
Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.
Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Instituto de Diversidad y Ecología Animal (IDEA), CONICET and Universidad Nacional de Córdoba, Córdoba, Córdoba, Argentina.
Orthohantaviruses, family Hantaviridae, are zoonotic agents that pose a significant public health threat, particularly in South America, where they cause severe respiratory illnesses in humans. Despite their importance, knowledge gaps remain regarding the distributions of both the viruses and their rodent hosts in Southern South America, a region characterized by a great complexity of viral genotypes and reservoirs. This review provides an updated overview of orthohantavirus hosts and their associated viral genotypes in Argentina, Chile, Paraguay, and Uruguay.
View Article and Find Full Text PDFIntroduction: Congenital Hypogonadotropic Hypogonadism (CHH) arises from defects in the synthesis, secretion, or action of gonadotropin-releasing hormone (GnRH), resulting in incomplete or absent pubertal development and various non-reproductive features. CHH is genetically heterogeneous, with over 50 genes implicated in its pathogenesis. This study aimed to elucidate the genetic variants of CHH in a cohort of patients from a single-center endocrinology unit.
View Article and Find Full Text PDFAging Cell
September 2025
Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
The CST (CTC1-STN1-TEN1) complex, a single-stranded DNA (ssDNA) binding complex, is essential for telomere maintenance and genome stability. Depletion of either CTC1 or STN1 results in cellular senescence, while mutations in these components are associated with severe hereditary disorders. In this study, we demonstrate that the direct STN1-CTC1 interaction stabilizes CTC1 by preventing its degradation via TRIM32 mediated ubiquitination.
View Article and Find Full Text PDF