Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Understanding the cortical activity patterns driving dexterous upper limb motion has the potential to benefit a broad clinical population living with limited mobility through the development of novel brain-computer interface (BCI) technology. The present study examines the activity of ensembles of motor cortical neurons recorded using microelectrode arrays in the dominant hemisphere of two BrainGate clinical trial participants with cervical spinal cord injury as they attempted to perform a set of 48 different hand gestures. Although each participant displayed a unique organization of their respective neural latent spaces, it was possible to achieve classification accuracies of ~70% for all 48 gestures (and ~90% for sets of 10). Our results show that single unit ensemble activity recorded in a single hemisphere of human precentral gyrus has the potential to generate a wide range of gesture-related signals across both hands, providing an intuitive and diverse set of potential command signals for intracortical BCI use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370598 | PMC |
http://dx.doi.org/10.1101/2024.08.23.608325 | DOI Listing |