Graph-based cell pattern recognition for merging the multi-modal optical microscopic image of neurons.

Comput Methods Programs Biomed

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, PR China; HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, PR China; Key Laboratory of

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A deep understanding of neuron structure and function is crucial for elucidating brain mechanisms, diagnosing and treating diseases. Optical microscopy, pivotal in neuroscience, illuminates neuronal shapes, projections, and electrical activities. To explore the projection of specific functional neurons, scientists have been developing optical-based multimodal imaging strategies to simultaneously capture dynamic in vivo signals and static ex vivo structures from the same neuron. However, the original position of neurons is highly susceptible to displacement during ex vivo imaging, presenting a significant challenge for integrating multimodal information at the single-neuron level. This study introduces a graph-model-based approach for cell image matching, facilitating precise and automated pairing of sparsely labeled neurons across different optical microscopic images. It has been shown that utilizing neuron distribution as a matching feature can mitigate modal differences, the high-order graph model can address scale inconsistency, and the nonlinear iteration can resolve discrepancies in neuron density. This strategy was applied to the connectivity study of the mouse visual cortex, performing cell matching between the two-photon calcium image and the HD-fMOST brain-wide anatomical image sets. Experimental results demonstrate 96.67% precision, 85.29% recall rate, and 90.63% F1 Score, comparable to expert technicians. This study builds a bridge between functional and structural imaging, offering crucial technical support for neuron classification and circuitry analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108392DOI Listing

Publication Analysis

Top Keywords

optical microscopic
8
neuron
5
graph-based cell
4
cell pattern
4
pattern recognition
4
recognition merging
4
merging multi-modal
4
multi-modal optical
4
image
4
microscopic image
4

Similar Publications

Advancements and perspectives on organelle-targeted fluorescent probes for super-resolution SIM imaging.

Chem Sci

September 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China

As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.

View Article and Find Full Text PDF

On-Target Photoassembly of Pyronin Dyes for Super-Resolution Microscopy.

Angew Chem Int Ed Engl

September 2025

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.

Controlled photoactivation is an auspicious and emerging approach in super-resolution microscopy, offering virtually zero background signal from the marker prior to activation. Pyronins are well-established fluorophores, but due to their inherent intercalating tendency towards nucleic acids, their use has been mostly avoided in super-resolution microscopy. Here, we describe a new class of diaryl ether and diaryl silane molecules that upon photoactivation close into fluorescent (silicon-)pyronins and term them Pyronin Upon Light Irradiation (PULI).

View Article and Find Full Text PDF

Position of Lower Marginal Arterial Arcade in Relation to Lower Tarsal Plate.

Ophthalmic Plast Reconstr Surg

September 2025

Department of Oculoplastic, Orbital & Lacrimal Surgery, Aichi Medical University Hospital. Nagakute, Aichi, Japan.

Purpose: To examine the position of the lower marginal arterial arcade (LMA) along the lower tarsal plate in microscopic specimens, particularly its relationship to anatomical landmarks.

Methods: Central sagittal sections of 27 lower eyelids (12 right, 10 left) from 15 Japanese cadavers (8 males, 7 females; aged 38-88 years, mean 70.5 years) were histologically examined.

View Article and Find Full Text PDF

Objective: Previous studies of nerve distribution in the orofacial complex have focused primarily on the anatomic courses of nerve fibers and have rarely addressed the density of nerve distribution. The nerve distribution in the mandible was described in only one report which showed an increase in nerve distribution density moving from the alveolar crest toward the inferior alveolar nerve. However, no previous reports have focused on the nerve distribution density in the maxilla.

View Article and Find Full Text PDF

The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.

View Article and Find Full Text PDF