Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metal-organic frameworks (MOFs) represent a distinctive class of nanoporous materials with considerable potential across a wide range of applications. Recently, a handful of MOFs has been explored for the storage of environmentally hazardous fluorinated gases (Keasler et al. 2023, 381, 1455), yet the potential of over 100,000 MOFs for this specific application has not been thoroughly investigated, particularly due to the absence of an established force field. In this study, we develop an accurate force field for nonaversive hydrofluorocarbon vinylidene fluoride (VDF) and conduct high-throughput computational screening to identify top-performing MOFs with high VDF adsorption capacities. Quantitative structure-property relationships are analyzed via machine learning models on the combinations of geometric, chemical, and topological features, followed by feature importance analysis to probe the effects of these features on VDF adsorption. Finally, from detailed structural analysis via radial distribution functions and spatial densities, we elucidate the significance of different interaction modes between VDF and metal nodes in top-performing MOFs. By synergizing force-field development, computational screening, and machine learning, our findings provide microscopic insights into VDF adsorption in MOFs that will advance the development of new nanoporous materials for high-performance VDF storage or capture.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c03854DOI Listing

Publication Analysis

Top Keywords

force field
12
computational screening
12
machine learning
12
vdf adsorption
12
metal-organic frameworks
8
vinylidene fluoride
8
development computational
8
screening machine
8
nanoporous materials
8
top-performing mofs
8

Similar Publications

The study of the self-assembly of surfactants in aqueous solutions, though a traditional field, remains fascinating and full of novelty. In this article, the anionic perfluorodecanoic acid surfactant (PFA) is separately complexed with three hydroxyalkylamines (monoethanolamine (MEA), diethylamine (DEA), and triethanolamine (TEA)) in aqueous solutions. The transformation of aggregate morphologies from spherical unilamellar to nanotubes and then to spherical bilamellar is observed at room temperature, which is confirmed by cryo-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Transposing intensive care innovation from modern warfare to other resource-limited settings.

Eur J Trauma Emerg Surg

September 2025

French Military Medical Service Academy - École du Val-de-Grâce, Paris, France.

Background: Delivering intensive care in conflict zones and other resource-limited settings presents unique clinical, logistical, and ethical challenges. These contexts, characterized by disrupted infrastructure, limited personnel, and prolonged field care, require adapted strategies to ensure critical care delivery under resource-limited settings.

Objective: This scoping review aims to identify and characterize medical innovations developed or implemented in recent conflicts that may be relevant and transposable to intensive care units operating in other resource-limited settings.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF