A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CT-based radiomics nomogram to predict proliferative hepatocellular carcinoma and explore the tumor microenvironment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Proliferative hepatocellular carcinomas (HCCs) is a class of aggressive tumors with poor prognosis. We aimed to construct a computed tomography (CT)-based radiomics nomogram to predict proliferative HCC, stratify clinical outcomes and explore the tumor microenvironment.

Methods: Patients with pathologically diagnosed HCC following a hepatectomy were retrospectively collected from two medical centers. A CT-based radiomics nomogram incorporating radiomics model and clinicoradiological features to predict proliferative HCC was constructed using the training cohort (n = 184), and validated using an internal test cohort (n = 80) and an external test cohort (n = 89). The predictive performance of the nomogram for clinical outcomes was evaluated for HCC patients who underwent surgery (n = 201) or received transarterial chemoembolization (TACE, n = 104). RNA sequencing data and histological tissue slides from The Cancer Imaging Archive database were used to perform transcriptomics and pathomics analysis.

Results: The areas under the receiver operating characteristic curve of the radiomics nomogram to predict proliferative HCC were 0.84, 0.87, and 0.85 in the training, internal test, and external test cohorts, respectively. The radiomics nomogram could stratify early recurrence-free survivals in the surgery outcome cohort (hazard ratio [HR] = 2.25; P < 0.001) and progression-free survivals in the TACE outcome cohort (HR = 2.21; P = 0.03). Transcriptomics and pathomics analysis indicated that the radiomics nomogram was associated with carbon metabolism, immune cells infiltration, TP53 mutation, and heterogeneity of tumor cells.

Conclusion: The CT-based radiomics nomogram could predict proliferative HCC, stratify clinical outcomes, and measure a pro-tumor microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367757PMC
http://dx.doi.org/10.1186/s12967-024-05393-3DOI Listing

Publication Analysis

Top Keywords

radiomics nomogram
20
predict proliferative
16
ct-based radiomics
12
nomogram predict
12
proliferative hcc
12
proliferative hepatocellular
8
explore tumor
8
clinical outcomes
8
internal test
8
test cohort
8

Similar Publications