A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A bioswitchable delivery system for microRNA therapeutics based on a tetrahedral DNA nanostructure. | LitMetric

A bioswitchable delivery system for microRNA therapeutics based on a tetrahedral DNA nanostructure.

Nat Protoc

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As microRNAs (miRNA) regulate almost all physiopathological activities in the human body, miRNA therapeutics that deliver miRNA regulators have attracted considerable attention in the field of nucleic acid drug development. The use of tetrahedral DNA nanostructures to deliver miRNA regulators is promising because of their simple fabrication, enhanced cell entry, effective tissue penetration, biocompatibility and functional editability. This protocol extension builds on our previous protocol for the use of tetrahedral DNA nanostructures and was designed to establish an updated bioswitchable delivery system (BDS) for achieving controlled cargo loading and release. A ribonuclease H-sensitive sequence is designed as a bioswitchable apparatus for the targeted release of the miRNA regulator. The functional sequence of the miRNA regulator and minimal secondary structure formation tendency during annealing are two key points in cargo design. We provide two BDS design strategies; BDS-A comprises an intact DNA tetrahedron with the RNA cargo hanging outside, offering the merits of lower cost, simplicity, and more direct structural design. In the BDS-B design, the RNA regulators are embedded into the DNA tetrahedron, which is beneficial for dermal tissue permeation applications. Following sequence design in Oligo 7 and Tiamat, the BDS assembly is completed and then ribonuclease H achieves controlled release of the miRNA regulator by triggering the bioswitchable apparatus. This is verified via polyacrylamide and agarose gel electrophoresis or fluorophore modifications. Both BDSs show promising cellular membrane permeability, tissue permeability and target inhibition in vitro and in vivo. The assembly and characterization of the BDS can be completed in 4 d, and the validation time for biostability and biological applications will depend on the specific use.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-024-01050-7DOI Listing

Publication Analysis

Top Keywords

tetrahedral dna
12
mirna regulator
12
bioswitchable delivery
8
delivery system
8
deliver mirna
8
mirna regulators
8
dna nanostructures
8
bioswitchable apparatus
8
release mirna
8
dna tetrahedron
8

Similar Publications