Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In many modern machine learning (ML) models, attention mechanisms (AMs) play a crucial role in processing data and identifying significant parts of the inputs, whether these are text or images. This selective focus enables subsequent stages of the model to achieve improved classification performance. Traditionally, AMs are applied as a preprocessing substructure before a neural network, such as in encoder/decoder architectures. In this paper, we extend the application of AMs to intermediate stages of data propagation within ML models. Specifically, we propose a generalized attention mechanism (GAM), which can be integrated before each layer of a neural network for classification tasks. The proposed GAM allows for at each layer/step of the ML architecture identification of the most relevant sections of the intermediate results. Our experimental results demonstrate that incorporating the proposed GAM into various ML models consistently enhances the accuracy of these models. This improvement is achieved with only a marginal increase in the number of parameters, which does not significantly affect the training time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0129065724500631 | DOI Listing |