A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Generalized Attention Mechanism to Enhance the Accuracy Performance of Neural Networks. | LitMetric

A Generalized Attention Mechanism to Enhance the Accuracy Performance of Neural Networks.

Int J Neural Syst

Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In many modern machine learning (ML) models, attention mechanisms (AMs) play a crucial role in processing data and identifying significant parts of the inputs, whether these are text or images. This selective focus enables subsequent stages of the model to achieve improved classification performance. Traditionally, AMs are applied as a preprocessing substructure before a neural network, such as in encoder/decoder architectures. In this paper, we extend the application of AMs to intermediate stages of data propagation within ML models. Specifically, we propose a generalized attention mechanism (GAM), which can be integrated before each layer of a neural network for classification tasks. The proposed GAM allows for at each layer/step of the ML architecture identification of the most relevant sections of the intermediate results. Our experimental results demonstrate that incorporating the proposed GAM into various ML models consistently enhances the accuracy of these models. This improvement is achieved with only a marginal increase in the number of parameters, which does not significantly affect the training time.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065724500631DOI Listing

Publication Analysis

Top Keywords

generalized attention
8
attention mechanism
8
neural network
8
proposed gam
8
mechanism enhance
4
enhance accuracy
4
accuracy performance
4
performance neural
4
neural networks
4
networks modern
4

Similar Publications