Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Gold nanostars have shown enormous potential as the main enablers of advanced applications ranging from biomedicine to sensing or catalysis. Their unique anisotropic structure featuring sharp spikes that grow from a central core offers enhanced optical capabilities and spectral tunability. Although several synthesis methods yield NSs of different morphologies and sizes up to several hundred nanometers, obtaining small NSs, while maintaining their plasmonic properties in the near-infrared, has proven challenging and elusive. Here, we show that Cu addition during NS synthesis in polyvinylpyrrolidone/dimethylformamide generates more crystallographic defects and promotes the directional growth, giving rise to NSs with a larger number of much sharper spikes. They are also formed at smaller volumes, enabling the generation of ultrasmall nanostars, with a volume as small as 421 nm (i.e., 9.2 nm of volume-equivalent diameter), while maintaining a plasmon resonance in the near-infrared. To this end, we systematically evaluate the influence of synthesis parameters on the nanostar size and optical characteristics and demonstrate their properties for applications in catalysis, surface-enhanced Raman spectroscopy sensing, and hyperthermia. The ultrasmall nanostars show excellent attributes in all of them, leveraging their small size to enhance properties related to a higher surface-to-volume ratio or colloidal diffusivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348798 | PMC |
http://dx.doi.org/10.1021/acsanm.4c03310 | DOI Listing |