Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A scalable and cost-effective solution for removing pollutants from water is to use biodegradable and eco-friendly sorbents that are readily available such as starch. The current research explored the removal of crystal violet (CV) dye from water using chemically modified potato starch. The adsorbent was prepared by cross-linking potato starch with sodium trimetaphosphate (STMP). The impact of various operating factors including pH, temperature, contact time, initial CV concentration, and adsorbent dosage on the removal of CV were investigated using batch experiments. The adsorption data were analyzed using a fuzzy regression approach, which provided a range-based representation of the model's output. The cross-linked starch adsorbent was mesoporous, with a mean pore diameter of 9.8 nm and a specific surface area of 2.7 m/g. The adsorption of CV by the STMP cross-linked potato starch was primarily influenced by the adsorbent dosage, followed by the solution pH, temperature, initial CV concentration, and contact time. The fuzzy regression model accurately predicted the independent experimental data of CV removal with an R of 0.985, demonstrating its value as a tool for the continuous monitoring of CV removal as well as optimizing water treatment conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357277 | PMC |
http://dx.doi.org/10.3390/molecules29163894 | DOI Listing |