Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyploid rice and its reverted diploid show rich phenotypic variation and strong heterosis, showing great breeding value. However, the genomic differences among tetraploids, counterpart common diploids, tetraploid-revertant diploids, and hybrid descendants are unclear. In this work, we bred a new excellent two-line hybrid rice variety, (HTRM12), using Haitian tetraploid self-reverted diploid (HTRM2). Furthermore, we comparatively analyzed the important agronomic traits and genome-wide variations of those closest relatives, Haitian diploid (HT2), Haitian tetraploid (HT4), HTRM2, and HTRM12 in detail, based on multiple phenotypic investigations, genome resequencing, and bioinformatics analysis. The results of agronomic traits analysis and genome-wide variation analysis of single nucleotide polymorphism (SNP), insertion-deletion (InDel), and copy number variation (CNV) show that HT4 and HTRM2 had abundant phenotypic and genomic variations compared to HT2. HTRM2 can inherit important traits and variations from HT4. This implies that tetraploid self-reverted diploid has high potential in creating excellent breeding materials and in breeding breakthrough hybrid rice varieties. Our study verifies the feasibility that polyploid rice could be used as a mutation carrier for creating variations and provides genomic information, new breeding materials, and a new way of application for tetraploid rice breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11354466PMC
http://dx.doi.org/10.3390/ijms25169012DOI Listing

Publication Analysis

Top Keywords

genome resequencing
8
closest relatives
8
high potential
8
rice breeding
8
polyploid rice
8
hybrid rice
8
haitian tetraploid
8
tetraploid self-reverted
8
self-reverted diploid
8
agronomic traits
8

Similar Publications

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Stress Biol

September 2025

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.

View Article and Find Full Text PDF

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

Latitudinal-environmental variations driving the local adaptation of stocks along the Chinese coast.

Mar Life Sci Technol

August 2025

Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.

Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.

View Article and Find Full Text PDF

Mud crab () is an economically important aquaculture crustacean species in China and Southeast Asia countries. However, the catches of wild mud crabs declined sharply due to overfishing and environmental pollution. Therefore, it is necessary to understand the current genetic resources and population history of mud crab (), which would provide appropriate guidelines for genetic resource management and breeding programs.

View Article and Find Full Text PDF

Copy number variation (CNV) in gene loci in animals can be driven by adaption to the environment. The relationship between CNV in genes for amylase (), which hydrolyzes starch, and dietary adaptation has been well studied. Copy number (CN) of is higher in human populations with high-starch diets, compared with those with low-starch diets.

View Article and Find Full Text PDF