A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A cross-institutional database of operational risk external loss events in Chinese banking sector 1986-2023. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nowadays the collection of operational risk data worldwide highly relies on human labor, leading to slow updates, data inconsistency, and limited quantity. There remains a substantial shortage of publicly accessible operational risk databases for risk analysis. This study proposes a new data collection framework by aggregating text mining methods to replace the exhausting manual collection process. The news about operational risk can be automatically collected from the web page, then its content is analyzed and the key information is extracted. Finally, the Public-Chinese Operational Loss Data (P-COLD) database for financial institutions is constructed and expanded. Each record contains 12 key information, such as occurrence time, loss amount, and business lines, offering a more thorough description of operational risk events. With 3,723 data records from 1986 to 2023, the P-COLD database has become one of the largest and most comprehensive external operational risk databases in China. We anticipate the P-COLD database will contribute to advancements in operational risk capital calculations, dependence analysis, and institutional internal controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358520PMC
http://dx.doi.org/10.1038/s41597-024-03803-1DOI Listing

Publication Analysis

Top Keywords

operational risk
28
p-cold database
12
operational
8
risk
8
risk databases
8
data
5
cross-institutional database
4
database operational
4
risk external
4
external loss
4

Similar Publications