Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Luminescent trivalent lanthanide (Ln) complexes are compounds of technological interest due to their unique photophysical properties, particularly anionic complexes, given their higher stability and emission quantum yields. However, structural studies on the cation-anion interaction in these complexes and the relation of such to luminescence are still lacking. Herein, the cation-anion interactions in two luminescent anionic tetrakis(2-thenoyltrifluoroacetonato)europate(III) complexes with alkylimidazolium cations, specifically 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium are investigated. The Eu complexes were synthesized and characterized by elemental analysis, mass spectrometry, and single-crystal X-ray crystallography, and their luminescence spectra were recorded at 77 K. Quantum chemical calculations were also performed. X-ray crystallography revealed hydrogen bonds between the enolate ligands and imidazolium ring hydrogens. The 1-butyl-3-methylimidazolium complex had two crystallographic Eu sites, also confirmed by luminescence spectroscopy. The 1-ethyl-3-methylimidazolium complex exhibited an unusual 300 cm splitting in the D → F transition, as reproduced by ligand field calculations, suggesting a stronger hydrogen bonding due to the smaller substituent. We hypothesize that this strong bonding likely causes angular distortions, resulting in high ligand field splittings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388464PMC
http://dx.doi.org/10.1021/acs.inorgchem.4c02729DOI Listing

Publication Analysis

Top Keywords

ligand field
12
x-ray crystallography
8
complexes
6
unusually large
4
large ligand
4
field splitting
4
splitting anionic
4
anionic europiumiii
4
europiumiii complexes
4
complexes induced
4

Similar Publications

Coordination polymers (CPs) are versatile materials formed by metal ions and organic ligands, offering a broad range of structural and functional possibilities. Phosphonates and phosphinates are particularly attractive ligands for CPs due to their multiple binding sites, varied coordination geometries, and ability to form robust network structures. Phosphonates, considered harder ligands, form strong bonds with hard metals such as Fe, while phosphinates offer additional versatility due to the varied pendant groups on phosphorus.

View Article and Find Full Text PDF

Neutral iron(III) and iron(II) complexes based on the pyruvic acid thiosemicarbazone (Hthpy) ligand [Fe(Hthpy)(thpy)] (1) and [Fe(Hthpy)] (2) were synthesized, and deeper insights into magneto-structural correlation were gained by FT-IR spectroscopy, single crystal X-ray crystallography, dc magnetic characterization, Fe Mössbauer spectroscopy, and DFT calculations. The X-ray structures of complex 1 were established for the HS ( = 5/2) state at 295 K and the LS ( = 1/2) state at 150 K. The crystal packing of 1 at these temperatures corresponds to the triclinic 1̄ symmetry and contains pairs of [Fe(Hthpy)(thpy)] complexes interconnected by a shortened S⋯S contact.

View Article and Find Full Text PDF

The Influence of Single-Stranded or Double-Stranded DNA Tags on Ligand Binding Affinity in DNA-Encoded Libraries.

Anal Chem

September 2025

Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

DNA-encoded libraries have become widely used in drug discovery, and several different setups to link chemical compounds to DNA have been employed in the field, including single-stranded and double-stranded DNA tags as well as a variety of linker chemistries. In our previous study, we observed distinct differences in binding affinities between ligands coupled either to single-stranded or double-stranded DNA; however, the molecular basis for these differences remained unclear. Here, we present a native ion mobility mass spectrometry approach that incorporates gas- and solution-phase activation techniques to systematically investigate these differences, specifically the impact of DNA tags on binding performance in protein-ligand interactions.

View Article and Find Full Text PDF

Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.

View Article and Find Full Text PDF

The exclusive formation of artificial multicomponent assemblies remains a significant challenge, in contrast to the well-established organization observed in natural systems, due to intrinsic entropic constraints. To overcome this limitation, recent efforts have been focused on developing precision self-assembly strategies for the rational construction of such architectures. Here, we construct an ideal complementary pair of 2,2':6',2″-terpyridine (tpy)-based ligands by fine-tuning the substituent bulkiness, which enables the quantitative formation of robust nested cages through efficient dynamic heteroleptic complexation with multivalent coordination.

View Article and Find Full Text PDF