98%
921
2 minutes
20
Background: The non-viral production of CAR-T cells through electroporation of transposon DNA plasmids is an alternative approach to lentiviral/retroviral methods. This method is particularly suitable for early-phase clinical trials involving novel types of CAR-T cells. The primary disadvantage of non-viral methods is the lower production efficiency compared to viral-based methods, which becomes a limiting factor for CAR-T production, especially in chemotherapy-pretreated lymphopenic patients.
Methods: We describe a good manufacturing practice (GMP)-compliant protocol for producing CD19 and CD123-specific CAR-T cells based on the electroporation of transposon vectors. The lymphocytes were purified from the blood of patients undergoing chemotherapy for B-NHL or AML and were electroporated with piggyBac transposon encoding CAR19 or CAR123, respectively. Electroporated cells were then polyclonally activated by anti-CD3/CD28 antibodies and a combination of cytokines (IL-4, IL-7, IL-21). The expansion was carried out in the presence of irradiated allogeneic blood-derived mononuclear cells (i.e., the feeder) for up to 21 days.
Results: Expansion in the presence of the feeder enhanced CAR-T production yield (4.5-fold in CAR19 and 9.3-fold in CAR123). Detailed flow-cytometric analysis revealed the persistence of early-memory CAR-T cells and a low vector-copy number after production in the presence of the feeder, with no negative impact on the cytotoxicity of feeder-produced CAR19 and CAR123 T cells. Furthermore, large-scale manufacturing of CAR19 carried out under GMP conditions using PBMCs obtained from B-NHL patients (starting number=200x10e6 cells) enabled the production of >50x10e6 CAR19 in 7 out of 8 cases in the presence of the feeder while only in 2 out of 8 cases without the feeder.
Conclusions: The described approach enables GMP-compatible production of sufficient numbers of CAR19 and CAR123 T cells for clinical application and provides the basis for non-viral manufacturing of novel experimental CAR-T cells that can be tested in early-phase clinical trials. This manufacturing approach can complement and advance novel experimental immunotherapeutic strategies against human hematologic malignancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347927 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1415328 | DOI Listing |
Nat Med
September 2025
Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy.
Cell Rep Med
September 2025
Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway. Electronic address:
Accurate identification of tumor-specific markers is vital for developing chimeric antigen receptor (CAR)-based therapies. While cell surface antigens are seldom cancer-restricted, their post-translational modifications (PTMs), particularly aberrant carbohydrate structures, offer attractive alternatives. Among these, the sialyl-Tn (STn) antigen stands out for its prevalent presence in various epithelial tumors.
View Article and Find Full Text PDFCancer Lett
September 2025
Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huaian, 223300, Jiangsu Province, China; Key Laboratory of Autoimmune Diseases of Huaian City, Huaian, 223300, Jiangsu Pr
CAR-T cell therapy, as a representative technology in cancer immunotherapy, has demonstrated notable success in the treatment of hematologic malignancies; however, a significant proportion of patients fail to achieve sustained remission. Through the analysis of bone marrow sequencing data prior to CD19 CAR-T cell therapy, we identified cellular adhesion as a pivotal factor influencing clinical outcomes. We developed a model to predict B-ALL treatment efficacy based on the core genes associated with cellular adhesion, which was validated in our clinical cohort.
View Article and Find Full Text PDFPathol Res Pract
September 2025
Department of Biotechnology, Delhi Technological University, India. Electronic address:
The intricate interplay between cancer and autoimmune diseases (ADs) is rooted in immune dysregulation, where genetic susceptibility, chronic inflammation, epigenetic modifications, and immunosuppressive therapies contribute to tumorigenesis. The dualistic nature of immune activation complicates therapeutic strategies, as immune checkpoint inhibitors and other immune-stimulatory therapies may exacerbate underlying ADs, leading to immune-related adverse events (irAEs), including organ toxicity, dermatologic reactions, and disease flares. Conversely, immunosuppressive treatments aimed at controlling ADs can compromise anti-tumor immunity and reduce the efficacy of cancer therapies.
View Article and Find Full Text PDFJ Clin Invest
September 2025
State Key Laboratory of Molecular Oncology, National Cancer Center/National, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC.
View Article and Find Full Text PDF