A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

PCB plug-in solder joint defect detection method based on coordinated attention-guided information fusion. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Printed Circuit Boards (PCBs) are the foundational component of electronic devices, and the detection of PCB defects is essential for ensuring the quality control of electronic products. Aiming at the problem that the existing PCB plug-in solder defect detection algorithms cannot meet the requirements of high precision, low false alarm rate, and high speed at the same time, this paper proposes a method based on spatial convolution pooling and information fusion. Firstly, on the basis of YOLOv3, an attention-guided pyramid structure is used to fuse context information, and multiple convolutions of different size are used to explore richer high-level semantic information; Secondly, a coordinated attention network structure is introduced to calibrate the fused pyramidal feature information, highlighting the important feature channels, and reducing the adverse impact of redundant parameters generated by feature fusion; Finally, the ASPP (Atrous Spatial Pyramid Pooling) structure is implemented in the original Darknet53 backbone feature extraction network to acquire multi-scale feature information of the detection targets. With these improvements, the average detection accuracy of the enhanced network has been elevated from 94.45 to 96.43%. This experiments shows that the improved network is more suitable for PCB plug-in solder defect detection applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349915PMC
http://dx.doi.org/10.1038/s41598-024-70100-7DOI Listing

Publication Analysis

Top Keywords

pcb plug-in
12
plug-in solder
12
defect detection
12
method based
8
solder defect
8
detection
6
feature
5
pcb
4
solder joint
4
joint defect
4

Similar Publications