A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

GloRESatE: A dataset for global rainfall erosivity derived from multi-source data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Numerous hydrological applications, such as soil erosion estimation, water resource management, and rain driven damage assessment, demand accurate and reliable rainfall erosivity data. However, the scarcity of gauge rainfall records and the inherent uncertainty in satellite and reanalysis-based rainfall datasets limit rainfall erosivity assessment globally. Here, we present a new global rainfall erosivity dataset (0.1° × 0.1° spatial resolution) integrating satellite (CMORPH and IMERG) and reanalysis (ERA5-Land) derived rainfall erosivity estimates with gauge rainfall erosivity observations collected from approximately 6,200 locations across the globe. We used a machine learning-based Gaussian Process Regression (GPR) model to assimilate multi-source rainfall erosivity estimates alongside geoclimatic covariates to prepare a unified high-resolution mean annual rainfall erosivity product. It has been shown that the proposed rainfall erosivity product performs well during cross-validation with gauge records and inter-comparison with the existing global rainfall erosivity datasets. Furthermore, this dataset offers a new global rainfall erosivity perspective, addressing the limitations of existing datasets and facilitating large-scale hydrological modelling and soil erosion assessments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349900PMC
http://dx.doi.org/10.1038/s41597-024-03756-5DOI Listing

Publication Analysis

Top Keywords

rainfall erosivity
44
global rainfall
16
rainfall
13
erosivity
11
soil erosion
8
gauge rainfall
8
erosivity estimates
8
erosivity product
8
gloresate dataset
4
global
4

Similar Publications