A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Incorporating Tissue-Specific Gene Expression Data to Improve Chemical-Disease Inference of in Silico Toxicogenomics Methods. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In silico toxicogenomics methods are resource- and time-efficient approaches for inferring chemical-protein-disease associations with potential mechanism information for exploring toxicological effects. However, current in silico toxicogenomics systems make inferences based on only chemical-protein interactions without considering tissue-specific gene/protein expressions. As a result, inferred diseases could be overpredicted with false positives. In this work, six tissue-specific expression datasets of genes and proteins were collected from the Expression Atlas. Genes were then categorized into high, medium, and low expression levels in a tissue- and dataset-specific manner. Subsequently, the tissue-specific expression datasets were incorporated into the chemical-protein-disease inference process of our ChemDIS system by filtering out relatively low-expressed genes. By incorporating tissue-specific gene/protein expression data, the enrichment rate for chemical-disease inference was largely improved with up to 62.26% improvement. A case study of melamine showed the ability of the proposed method to identify more specific disease terms that are consistent with the literature. A user-friendly user interface was implemented in the ChemDIS system. The methodology is expected to be useful for chemical-disease inference and can be implemented for other in silico toxicogenomics tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348041PMC
http://dx.doi.org/10.3390/jox14030057DOI Listing

Publication Analysis

Top Keywords

silico toxicogenomics
16
chemical-disease inference
12
incorporating tissue-specific
8
expression data
8
toxicogenomics methods
8
tissue-specific gene/protein
8
tissue-specific expression
8
expression datasets
8
chemdis system
8
expression
6

Similar Publications