Continuous spectral and coupling-strength encoding with dual-gradient metasurfaces.

Nat Nanotechnol

Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universtität München, Munich, Germany.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To control and enhance light-matter interactions at the nanoscale, two parameters are central: the spectral overlap between an optical cavity mode and the material's spectral features (for example, excitonic or molecular absorption lines), and the quality factor of the cavity. Controlling both parameters simultaneously would enable the investigation of systems with complex spectral features, such as multicomponent molecular mixtures or heterogeneous solid-state materials. So far, it has been possible only to sample a limited set of data points within this two-dimensional parameter space. Here we introduce a nanophotonic approach that can simultaneously and continuously encode the spectral and quality-factor parameter space within a compact spatial area. We use a dual-gradient metasurface design composed of a two-dimensional array of smoothly varying subwavelength nanoresonators, each supporting a unique mode based on symmetry-protected bound states in the continuum. This results in 27,500 distinct modes and a mode density approaching the theoretical upper limit for metasurfaces. By applying our platform to surface-enhanced molecular spectroscopy, we find that the optimal quality factor for maximum sensitivity depends on the amount of analyte, enabling effective molecular detection regardless of analyte concentration within a single dual-gradient metasurface. Our design provides a method to analyse the complete spectral and coupling-strength parameter space of complex material systems for applications such as photocatalysis, chemical sensing and entangled photon generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638065PMC
http://dx.doi.org/10.1038/s41565-024-01767-2DOI Listing

Publication Analysis

Top Keywords

parameter space
12
spectral coupling-strength
8
spectral features
8
quality factor
8
dual-gradient metasurface
8
metasurface design
8
spectral
5
continuous spectral
4
coupling-strength encoding
4
encoding dual-gradient
4

Similar Publications

Nontargeted Screening of Fingermark Residue Using Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry for Future Use in Forensic Applications.

J Am Soc Mass Spectrom

September 2025

Nontargeted Separations Laboratory, Chemistry Department, William & Mary, Integrated Science Center 1053, 540 Landrum Drive, Williamsburg, Virginia 23188, United States.

Fingerprints are routinely used as evidence in forensic investigations. Fingermarks, any mark left by a donor whether a complete print or not, include sweat and oil excreted by the donor. The chemical components of fingermarks are typically analyzed by gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Assessment of industrial fault diagnosis using rough approximations of fuzzy hypersoft sets.

PLoS One

September 2025

Department of Maths and Computer Science, Faculty of Science, University of Kinshasa, Kinshasa, The Democratic Republic of the Congo.

Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions.

View Article and Find Full Text PDF

Background: Lower extremity alignment in knee osteoarthritis (OA) is conventionally assessed using standing radiographs. However, symptoms often manifest during gait. Understanding dynamic alignment during gait may help characterize disease progression and inform treatment strategies.

View Article and Find Full Text PDF

Background: Because of their ecological, aesthetic, and beneficial characteristics, native desert plants are highly significant. They can also be utilized in landscape architecture, particularly in environments with harsh conditions. The present study aims to evaluate the potential utilization of the wild desert plants Pancratium maritimum L.

View Article and Find Full Text PDF

An efficient and flexible framework for inferring global sensitivity of agent-based model parameters.

PLoS Comput Biol

September 2025

Program of Computational Sciences, Bard College, Annandale-on-Hudson, New York, United States of America.

Agent-based models (ABMs) have become essential tools for simulating complex biological, ecological, and social systems where emergent behaviors arise from the interactions among individual agents. Quantifying uncertainty through global sensitivity analysis is crucial for assessing the robustness and reliability of ABM predictions. However, most global sensitivity methods demand substantial computational resources, making them impractical for highly complex models.

View Article and Find Full Text PDF