A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lab-scale evaluation of Microalgal-Bacterial granular sludge as a sustainable alternative for brewery wastewater treatment. | LitMetric

Lab-scale evaluation of Microalgal-Bacterial granular sludge as a sustainable alternative for brewery wastewater treatment.

Bioresour Technol

LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Centre for Advanced Process Technology and Urban Resource Recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microalgal-bacterial granular sludge (MBGS) could offer a sustainable alternative to traditional aerobic methods in brewery wastewater (BWW) treatment. This study compared MBGS with conventional activated sludge (AS) in treating real BWW and highlighted its advantages and challenges. MBGS achieved comparable chemical oxygen demand removal efficiency (93%) compared to AS (89%). Additionally, MBGS exhibited higher phosphate removal capabilities than AS. Extra nitrogen was added to influent to balance C/N ratio of BWW. MBGS was robust in handling C/N ratio fluctuations with an 82% total nitrogen removal efficiency. Metagenomic analysis further indicated that most of the genes involved in carbon, nitrogen and phosphorus metabolism were up-regulated in MBGS compared to AS. Despite changes in the microbial community and settling ability due to high starch and sugar content in BWW, MBGS demonstrated high efficiency and sustainability. Further research should optimize MBGS operation strategies to fully realize its potential for sustainable BWW treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131331DOI Listing

Publication Analysis

Top Keywords

microalgal-bacterial granular
8
granular sludge
8
sustainable alternative
8
brewery wastewater
8
mbgs
8
bww treatment
8
removal efficiency
8
c/n ratio
8
bww mbgs
8
bww
5

Similar Publications