Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Chitosan-based hydrogels, as natural high-molecular-weight flexible materials, are widely utilized due to their outstanding properties. In this research, we developed a one-pot method for synthesizing a novel PVA/CS@PPy-PDA conductive hydrogel and explored the internal bonding patterns through molecular dynamics simulations. By adding PPy-PDA nanoparticles into a hydrogel matrix, an interpenetrating conductive network established successfully. The uniform distribution of PPy-PDA nanoparticles endowed the hydrogel with good electrical conductivity (0.171 S/m), significantly enhanced mechanical properties, and strain sensing (S = 5.04), as well as near-infrared photothermal responsiveness (temperature increase of 41.9 °C within 30 s). Additionally, due to the hydrogel's significant photothermal conversion efficiency under near-infrared radiation, it exhibits rapid elimination of Escherichia coli with an antibacterial efficiency exceeding 90 %. The unique hydrogen-bonded crosslinked structure provides the hydrogel with excellent re-healing properties, allowing for restoration through a freeze-thaw process after damage. The conductivity remains nearly unchanged after re-healing, maintaining the material's integrity and functionality. The flexible sensor based on this hydrogel has a response time of 100 ms and can sensitively detect large-scale deformations (e.g., joint bending at various angles), different gravitational forces, and recognize human handwriting. These characteristics make this hydrogel a promising candidate for advancing intelligent wearable technologies and human-machine interaction systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134956 | DOI Listing |