Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiopulmonary bypass (CPB), an extracorporeal method necessary for the surgical correction of complex congenital heart defects, incites significant inflammation that affects vascular function. These changes are associated with alterations in cellular metabolism that promote energy production to deal with this stress. Utilizing laser Doppler perfusion monitoring coupled with iontophoresis in patients undergoing corrective heart surgery, we hypothesized that temporal, untargeted metabolomics could be performed to assess the link between metabolism and vascular function. Globally, we found 2,404 unique features in the plasma of patients undergoing CPB. Metabolites related to arginine biosynthesis were the most altered by CPB. Correlation of metabolic profiles with endothelial-dependent (acetylcholine [ACh]) or endothelial-independent (sodium nitroprusside [SNP]) vascular reactivity identified purine metabolism being most consistently associated with either vascular response. Concerning ACh-mediated responses, acetylcarnitine levels were most strongly associated, while glutamine levels were associated with both ACh and SNP responsiveness. These data provide insight into the metabolic landscape of children undergoing CPB for corrective heart surgery and provide detail into how these metabolites relate to physiological aberrations in vascular function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12013827PMC
http://dx.doi.org/10.1097/SHK.0000000000002446DOI Listing

Publication Analysis

Top Keywords

vascular function
12
vascular reactivity
8
cardiopulmonary bypass
8
patients undergoing
8
corrective heart
8
heart surgery
8
undergoing cpb
8
levels associated
8
associated
5
vascular
5

Similar Publications

Organotypic Culture of Adult Vascularized Porcine Retina Explants In Vitro on Nanotube Scaffolds.

Biol Proced Online

September 2025

Division of Surface Physics, Department of Physics and Earth System Sciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.

Background: Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.

Methods: Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds.

View Article and Find Full Text PDF

Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Integrins from extracellular vesicles as players in tumor microenvironment and metastasis.

Cancer Metastasis Rev

September 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.

Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.

View Article and Find Full Text PDF

Background: Fetal growth restriction (FGR) causes an adaptive redistribution of the cardiac output towards sustained cerebral vasodilation. However, the consequences of FGR and cerebral vasodilatation due to fetal hypoxia on the blood-brain barrier (BBB) are still poorly studied. This study assesses BBB permeability in the neonatal cortex of pups gestated under intrauterine hypobaric hypoxia.

View Article and Find Full Text PDF