Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Seismic data recorded by distributed acoustic sensing (DAS) interrogator units on deployed optical fiber are being used for a variety of subsurface imaging and monitoring investigations. To reduce the costs of active-source DAS surveying applications, seismic interferometry can be applied to estimate inter-sensor wavefields from DAS records. However, recording long-term records for ambient interferometry requires considerable data storage and sections of DAS optical fibers may be unusable because of broadside sensitivity considerations from the DAS fiber orientation and due to localized coherent energy sources with amplitudes significantly larger than the ambient signal of interest. Compressive sensing, a wavefield reconstruction technique, can mitigate the problems of large data storage and unusable data. We apply compressive sensing-based multi-source wavefield reconstruction to estimate correlograms of ambient DAS records from a fiber array in Perth, Australia. The multi-source method uses all available virtual-source gathers for simultaneous wavefield reconstruction and is different from the conventional single-source method that separately reconstructs individual virtual-source gathers. Using the Fourier and curvelet transforms to sparsify interferometric wavefields, we show that multi-source reconstruction is applicable to the DAS data and that the Fourier multi-source reconstruction can improve the recovered wavefields by approximately 5-10 dB, compared to the Fourier and curvelet single-source wavefield reconstructions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0028123 | DOI Listing |