A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comparison of Ensemble Learning Methods for Classification in Cancer Registries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Significant developments are currently underway in the field of cancer research, particularly in Germany, regarding cancer registration and the use of medical information systems. The use of such systems contributes significantly to quality assurance and increased efficiency in data evaluation. The growing importance of artificial intelligence (AI) in cancer research is evident as these systems integrate AI for various purposes, i.e. to assist users in data analysis. This paper uses ensemble learning to classify the graphical user interface state of the medical information system CARESS. The results show that all ensemble learning models utilized achieved good performance. In particular, the gradient boosting algorithm performed the best with an accuracy of 97%. The results represent a starting point for further development of ensemble learning in medical data analysis, with the potential for integration into various applications such as recommender systems.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI240518DOI Listing

Publication Analysis

Top Keywords

ensemble learning
16
data analysis
8
comparison ensemble
4
learning
4
learning methods
4
methods classification
4
cancer
4
classification cancer
4
cancer registries
4
registries developments
4

Similar Publications