A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Landscape-scale predictions of future grassland conversion to cropland or development. | LitMetric

Landscape-scale predictions of future grassland conversion to cropland or development.

Conserv Biol

Farm Production and Conservation, U.S. Department of Agriculture, Washington, District of Columbia, USA.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grassland conservation planning often focuses on high-risk landscapes, but many grassland conversion models are not designed to optimize conservation planning because they lack multidimensional risk assessments and are misaligned with ecological and conservation delivery scales. To aid grassland conservation planning, we developed landscape-scale models at relevant scales that predict future (2021-2031) total and proportional loss of unprotected grassland to cropland or development. We developed models for 20 ecoregions across the contiguous United States by relating past conversion (2011-2021) to a suite of covariates in random forest regression models and applying the models to contemporary covariates to predict future loss. Overall, grassland loss models performed well, and explanatory power varied spatially across ecoregions (total loss model: weighted group mean R = 0.89 [range: 0.83-0.96], root mean squared error [RMSE] = 9.29 ha [range: 2.83-22.77 ha]; proportional loss model: weighted group mean R = 0.74 [range: 0.64-0.87], RMSE = 0.03 [range: 0.02-0.06]). Amount of crop in the landscape and distance to cities, ethanol plants, and concentrated animal feeding operations had high variable importance in both models. Total grass loss was greater when there were moderate amounts of grass, crop, or development (∼50%) in the landscape. Proportional grass loss was greater when there was less grass (∼<30%) and more crop or development (∼>50%). Some variables had a large effect on only a subset of ecoregions, for example, grass loss was greater when ∼>70% of the landscape was enrolled in the Conservation Reserve Program. Our methods provide a simple and flexible approach for developing risk layers well suited for conservation that can be extended globally. Our conversion models can support conservation planning by enabling prioritization as a function of risk that can be further optimized by incorporating biological value and cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780205PMC
http://dx.doi.org/10.1111/cobi.14346DOI Listing

Publication Analysis

Top Keywords

conservation planning
16
grass loss
12
loss greater
12
grassland conversion
8
cropland development
8
grassland conservation
8
models
8
conversion models
8
predict future
8
loss
8

Similar Publications