Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Anti-HER2 therapies, including the HER2 antibody-drug conjugates (ADCs) trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), have led to improved survival outcomes in patients with HER2-overexpressing (HER2+) metastatic breast cancer. However, intrinsic or acquired resistance to anti-HER2-based therapies remains a clinical challenge in these patients, as there is no standard of care following disease progression. The purpose of this study was to elucidate the mechanisms of resistance to T-DM1 and T-DXd in HER2+ BC patients and preclinical models and identify targets whose inhibition enhances the antitumor activity of T-DXd in HER2-directed ADC-resistant HER2+ breast cancer in vitro and in vivo.

Methods: Targeted DNA and whole transcriptome sequencing were performed in breast cancer patient tissue samples to investigate genetic aberrations that arose after anti-HER2 therapy. We generated T-DM1 and T-DXd-resistant HER2+ breast cancer cell lines. To elucidate their resistance mechanisms and to identify potential synergistic kinase targets for enhancing the efficacy of T-DXd, we used fluorescence in situ hybridization, droplet digital PCR, Western blotting, whole-genome sequencing, cDNA microarray, and synthetic lethal kinome RNA interference screening. In addition, cell viability, colony formation, and xenograft assays were used to determine the synergistic antitumor effect of T-DXd combinations.

Results: We found reduced HER2 expression in patients and amplified DNA repair-related genes in patients after anti-HER2 therapy. Reduced ERBB2 gene amplification in HER2-directed ADC-resistant HER2+ breast cancer cell lines was through DNA damage and epigenetic mechanisms. In HER2-directed ADC-resistant HER2+ breast cancer cell lines, our non-biased RNA interference screening identified the DNA repair pathway as a potential target within the canonical pathways to enhance the efficacy of T-DXd. We validated that the combination of T-DXd with ataxia telangiectasia and Rad3-related inhibitor, elimusertib, led to significant breast cancer cell death in vitro (P < 0.01) and in vivo (P < 0.01) compared to single agents.

Conclusions: The DNA repair pathways contribute to HER2-directed ADC resistance. Our data justify exploring the combination treatment of T-DXd with DNA repair-targeting drugs to treat HER2-directed ADC-resistant HER2+ breast cancer in clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337831PMC
http://dx.doi.org/10.1186/s13046-024-03143-3DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
her2+ breast cancer
16
cancer cell
16
her2-directed adc-resistant
12
adc-resistant her2+ breast
12
cell lines
12
dna repair
8
repair pathway
8
trastuzumab deruxtecan
8
cancer
8

Similar Publications

Background: There is a demand for population level research on the potential genetic-basis of mesothelioma (e.g. BRCA1-associated protein-1 [BAP1]) independent of other risk factors, such as amphibole asbestos exposure.

View Article and Find Full Text PDF

The International Center for the Study of Breast Cancer Subtypes (ICSBCS) has played a vital role in defining and overcoming many inequities that exist in breast cancer treatment and outcome on a global basis through capacity-building programs that improve the management of breast cancer patients across the African diaspora. ICSBCS activities also fill critical gaps in disparities research related to the genetics of ancestry. Over the past 20 years, ICSBCS teams have spearheaded landmark studies documenting the relevance of genetic African ancestry to breast cancer risk, while also improving the quality of care delivered to patients in diverse communities.

View Article and Find Full Text PDF