98%
921
2 minutes
20
This paper introduces a novel, cost-effective solution designed to achieve large absorption bandwidth within the THz spectrum employing a miniaturized, single-layer metamaterial structure. The designed structure features a single circular ring composed of an ohmic resistive sheet with notably higher sheet resistance than traditional metallic resonators. This distinctive design is implemented on a lossy dielectric polyimide substrate with a backing of metallic gold. Our developed absorbing structure demonstrates the capability to achieve a substantial absorption bandwidth ranging from 3.78 to 4.25 THz, maintaining a consistent absorption rate of over 90%. Moreover, we conducted an analysis to assess its absorption performance under various sheet resistance values within the top layer. Additionally, we characterized its angular stability and polarization insensitivity through oblique incident and polarization angle analysis. Finally, an RLC circuital and interference theory approach is adopted to justify its simulated results. The proposed absorber shows potential for a broad spectrum of applications, encompassing communication, imaging, and diverse integrated circuits operating within the THz band.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333757 | PMC |
http://dx.doi.org/10.1038/s41598-024-70251-7 | DOI Listing |
Research (Wash D C)
September 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.
View Article and Find Full Text PDFRSC Adv
August 2025
College of Materials Science and Engineering, Jilin University of Chemical Technology Jilin 132022 PR China
To contribute to the circular and sustainable economy framework, waste tire rubber reclamation by extracting carbon black through pyrolysis and heat treatment and then ingeniously designing it as an electromagnetic wave absorbing (EWA) material is proposed herein. The results showed that the pyrolysis-recycled carbon black (RCB) was heterogeneous with multiple interfaces, making it suitable for EWA application. The RCB was processed at 500 °C-1000 °C to study the changes in the composite and microstructure as well as the EWA properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
College of Physics and Information Engineering of Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
As Micro-LED sizes shrink, luminescence efficiency drops significantly due to sidewall damage from plasma etching. This study introduces a precision-selective ion implantation (PSII) strategy to boost external quantum efficiency (EQE) and brightness of Micro-LED at high current density, vital for applications like augmented reality (AR) and optical communication, instead of relying on sidewall passivation for low current density efficiency. PSII's effects is systematically evaluated on electrical isolation and photoelectric properties.
View Article and Find Full Text PDFSci Rep
September 2025
Faculty of Physics, University of Tabriz, Tabriz, 51665-163, Iran.
Recent advances in nanostructured photodetectors have enabled precise control over light absorption while minimizing photon losses. In this work, we demonstrate a plasmonic metamaterial absorber based on two-dimensional MXene (Ti₃C₂Tₓ) featuring geometrically tunable tetragram-shaped arrays. Through finite-difference time-domain (FDTD) simulations and structural optimization, we achieved over 90% photon absorption across the broadband spectral range of 1000-2500 nm, representing a significant enhancement in operational bandwidth.
View Article and Find Full Text PDFSci Rep
August 2025
Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, 80-233, Poland.
This research investigates the potential of a sectoral Cylindrical Dielectric Resonator Antenna (CDRA) for biomedical telemetry. CDRAs are known for their low-loss, ruggedness, and stability, but their limited bandwidth and size make them unsuitable for wearable devices. The research addresses these limitations by proposing a dual-mode antenna that operates in [Formula: see text] and [Formula: see text] modes.
View Article and Find Full Text PDF