A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MIGP: Metapath Integrated Graph Prompt Neural Network. | LitMetric

MIGP: Metapath Integrated Graph Prompt Neural Network.

Neural Netw

Guangdong Provincial Key Laboratory of Intellectual Property and Big Data, Guangzhou, China; School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Graph neural networks (GNNs) leveraging metapaths have garnered extensive utilization. Nevertheless, the escalating parameters and data corpus within graph pre-training models incur mounting training costs. Consequently, GNN models encounter hurdles including diminished generalization capacity and compromised performance amidst small sample datasets. Drawing inspiration from the efficacy demonstrated by self-supervised learning methodologies in natural language processing, we embark on an exploration. We endeavor to imbue graph data with augmentable, learnable prompt vectors targeting node representation enhancement to foster superior adaptability to downstream tasks. This paper proposes a novel approach, the Metapath Integrated Graph Prompt Neural Network (MIGP), which leverages learnable prompt vectors to enhance node representations within a pretrained model framework. By leveraging learnable prompt vectors, MIGP aims to address the limitations posed by mall sample datasets and improve GNNs' model generalization. In the pretraining stage, we split symmetric metapaths in heterogeneous graphs into short metapaths and explicitly propagate information along the metapaths to update node representations. In the prompt-tuning stage, the parameters of the pretrained model are fixed, a set of independent basis vectors is introduced, and an attention mechanism is employed to generate task-specific learnable prompt vectors for each node. Another notable contribution of our work is the introduction of three patent datasets, which is a pioneering application in related fields. We will make these three patent datasets publicly available to facilitate further research on large-scale patent data analysis. Through comprehensive experiments conducted on three patent datasets and three other public datasets, i.e., ACM, IMDB, and DBLP, we demonstrate the superior performance of the MIGP model in enhancing model applicability and performance across a variety of downstream datasets. The source code and datasets are available in the website..

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106595DOI Listing

Publication Analysis

Top Keywords

learnable prompt
16
prompt vectors
16
three patent
12
patent datasets
12
metapath integrated
8
integrated graph
8
graph prompt
8
prompt neural
8
neural network
8
datasets
8

Similar Publications