A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhanced biofuel production from Sacha Inchi wastes: Optimizing pyrolysis for higher yield and improved fuel properties. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sacha inchi waste consists of residues (SR) and shells (SS) that are processed into liquid fuel using a traditional pyrolysis process. Pyrolysis was performed at a constant heating rate of 20 °C/min and nitrogen flow rate of 100 mL/min. Before the process took place, a preliminary TGA analysis was performed and the results revealed that the appropriate pyrolysis temperature and time allowed a variation of 250-450 °C and 10-50 min, respectively. The results showed that the pyrolysis oil yields of both SR and SS increased with increasing pyrolysis temperature and time. However, the pyrolysis oil yield of SR was significantly higher than that of SS because the main component of SR contains abundant carbon from saturated fatty acids. The ANOVA method shows that the SS model is more complex and examines more terms and interactions, whereas the SR model is simpler and focuses on fewer components, but still shows significant effects, especially through temperature. The nonsignificant p-value for time in the SR model suggests that time may not have the same influence as temperature on the dependent variable. The SS pyrolysis oil was consistent and resulted in a constant calorific value and flash point between 31.10 and 32.14 MJ/kg and 120 and 124 °C, respectively. However, decreasing the O/C atomic ratio of SR pyrolysis oil from 0.92 to 0.38 influenced the increasing calorific value from 36.66 to 38.75 MJ/kg, while the H/C atomic ratio of SR pyrolysis oil was close to 2.00. This suggests that its effectiveness maintains an alkene structure that can improve fuel efficiency. The molecular formulae of the SS pyrolysis oil were CHNO and that of SR pyrolysis oil was CHNO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327558PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e35090DOI Listing

Publication Analysis

Top Keywords

pyrolysis oil
28
pyrolysis
12
sacha inchi
8
pyrolysis temperature
8
temperature time
8
atomic ratio
8
ratio pyrolysis
8
oil chno
8
oil
7
enhanced biofuel
4

Similar Publications