Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Engineering and reprogramming cells has significant therapeutic potential to treat a wide range of diseases, by replacing missing or defective proteins, to provide transcription factors (TFs) to reprogram cell phenotypes, or to provide enzymes such as RNA-guided Cas9 derivatives for CRISPR-based cell engineering. While viral vector-mediated gene transfer has played an important role in this field, the use of mRNA avoids safety concerns associated with the integration of DNA into the host cell genome, making mRNA particularly attractive for in vivo applications. Widespread application of mRNA for cell engineering is limited by its instability in the biological environment and challenges involved in the delivery of mRNA to its target site. In this review, we examine challenges that must be overcome to develop effective therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tibtech.2024.07.012 | DOI Listing |