A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Clinical validation of enhanced CT imaging for distal radius fractures through conditional Generative Adversarial Networks (cGAN). | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/purpose: Distal radius fractures (DRFs) account for approximately 18% of fractures in patients 65 years and older. While plain radiographs are standard, the value of high-resolution computed tomography (CT) for detailed imaging crucial for diagnosis, prognosis, and intervention planning, and increasingly recognized. High-definition 3D reconstructions from CT scans are vital for applications like 3D printing in orthopedics and for the utility of mobile C-arm CT in orthopedic diagnostics. However, concerns over radiation exposure and suboptimal image resolution from some devices necessitate the exploration of advanced computational techniques for refining CT imaging without compromising safety. Therefore, this study aims to utilize conditional Generative Adversarial Networks (cGAN) to improve the resolution of 3 mm CT images (CT enhancement).

Methods: Following institutional review board approval, 3 mm-1 mm paired CT data from 11 patients with DRFs were collected. cGAN was used to improve the resolution of 3 mm CT images to match that of 1 mm images (CT enhancement). Two distinct methods were employed for training and generating CT images. In Method 1, a 3 mm CT raw image was used as input with the aim of generating a 1 mm CT raw image. Method 2 was designed to emphasize the difference value between the 3 mm and 1 mm images; using a 3 mm CT raw image as input, it produced the difference in image values between the 3 mm and 1 mm CT scans. Both quantitative metrics, such as peak signal-to-noise ratio (PSNR), mean squared error (MSE), and structural similarity index (SSIM), and qualitative assessments by two orthopedic surgeons were used to evaluate image quality by assessing the grade (1~4, which low number means high quality of resolution).

Results: Quantitative evaluations showed that our proposed techniques, particularly emphasizing the difference value in Method 2, consistently outperformed traditional approaches in achieving higher image resolution. In qualitative evaluation by two clinicians, images from method 2 showed better quality of images (grade: method 1, 2.7; method 2, 2.2). And more choice was found in method 2 for similar image with 1 mm slice image (15 vs 7, p = 201).

Conclusion: In our study utilizing cGAN for enhancing CT imaging resolution, the authors found that the method, which focuses on the difference value between 3 mm and 1 mm images (Method 2), consistently outperformed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329132PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308346PLOS

Publication Analysis

Top Keywords

images method
12
raw image
12
image
9
method
9
distal radius
8
radius fractures
8
conditional generative
8
generative adversarial
8
adversarial networks
8
networks cgan
8

Similar Publications