Controls on authigenic mineralization in experimental Ediacara-style preservation.

Geobiology

Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The earliest evidence of complex macroscopic life on Earth is preserved in Ediacaran-aged siliciclastic deposits as three-dimensional casts and molds, known as Ediacara-style preservation. The mechanisms that led to this extraordinary preservation of soft-bodied organisms in fine- to medium-grained sandstones have been extensively debated. Ediacara-style fossilization is recorded in a variety of sedimentary facies characterized by clean quartzose sandstones (as in the eponymous Ediacara Member) as well as less compositionally mature, clay-rich sandstones and heterolithic siliciclastic deposits. To investigate this preservational process, we conducted experiments using different mineral substrates (quartzose sand, kaolinite, and iron oxides), a variety of soft-bodied organisms (microalgae, cyanobacteria, marine invertebrates), and a range of estimates for Ediacaran seawater dissolved silica (DSi) levels (0.5-2.0 mM). These experiments collectively yielded extensive amorphous silica and authigenic clay coatings on the surfaces of organisms and in intergranular pore spaces surrounding organic substrates. This was accompanied by a progressive drawdown of the DSi concentration of the experimental solutions. These results provide evidence that soft tissues can be rapidly preserved by silicate minerals precipitated under variable substrate compositions and a wide range of predicted scenarios for Ediacaran seawater DSi concentrations. These observations suggest plausible mechanisms explaining how interactions between sediments, organic substrates, and seawater DSi played a significant role in the fossilization of the first complex ecosystems on Earth.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gbi.12615DOI Listing

Publication Analysis

Top Keywords

ediacara-style preservation
8
siliciclastic deposits
8
soft-bodied organisms
8
ediacaran seawater
8
organic substrates
8
seawater dsi
8
controls authigenic
4
authigenic mineralization
4
mineralization experimental
4
experimental ediacara-style
4

Similar Publications

The processes responsible for the fossilization of the Ediacara Biota-Earth's earliest fossil record of communities of complex, multicellular organisms-have long been debated. On the basis of both geologic and experimental investigations, recent studies have proposed that early diagenetic silica cementation may have been pivotal to the moldic preservation in sandstone ("Ediacara-style preservation") of fossil assemblages from the eponymous Ediacara Member of South Australia. However, the extent to which early silica cementation can explain other instances of Ediacara-style fossilization in units recording disparate depositional environments, paleogeographies, and geologic ages has not been previously constrained.

View Article and Find Full Text PDF

The earliest evidence of complex macroscopic life on Earth is preserved in Ediacaran-aged siliciclastic deposits as three-dimensional casts and molds, known as Ediacara-style preservation. The mechanisms that led to this extraordinary preservation of soft-bodied organisms in fine- to medium-grained sandstones have been extensively debated. Ediacara-style fossilization is recorded in a variety of sedimentary facies characterized by clean quartzose sandstones (as in the eponymous Ediacara Member) as well as less compositionally mature, clay-rich sandstones and heterolithic siliciclastic deposits.

View Article and Find Full Text PDF

Earth's earliest fossils of complex macroscopic life are recorded in Ediacaran-aged siliciclastic deposits as exceptionally well-preserved three-dimensional casts and molds, known as "Ediacara-style" preservation. Ediacara-style fossil assemblages commonly include both macrofossils of the enigmatic Ediacara Biota and associated textural impressions attributed to microbial matgrounds that were integral to the ecology of Ediacara communities. Here, we use an experimental approach to interrogate to what extent the presence of mat-forming microorganisms was likewise critical to the Ediacara-style fossilization of these soft-bodied organisms.

View Article and Find Full Text PDF