98%
921
2 minutes
20
This study delves into the magnetic response of core electrons and their influence on the global magnetic response of planar and three-dimensional systems containing heavy elements, employing the removing valence electron (RVE) approximation. We also explore electronic aromaticity indices to understand the potential role of core electrons on electron delocalization in the absence of an external perturbation. The study reveals that core electrons significantly contribute to the overall magnetic response, especially to the magnetic shielding, affecting the interpretation of aromaticity. In contrast, the calculation of the electronic aromaticity indices suggests a negligible participation of the core electrons on electron delocalization. Despite their widespread use, the study emphasizes caution in labeling systems as strongly aromatic based solely on shielding function computations. It is noteworthy to emphasize the limitations associated with each aromaticity criterion; particularly in the context of magnetic shielding function calculations, the core-electron effect contamination is undeniable. Hence, the integration of various criteria becomes imperative for attaining a comprehensive understanding of magnetic responses within complex systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323299 | PMC |
http://dx.doi.org/10.1039/d4sc02269f | DOI Listing |
Biomater Sci
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
Colorectal cancer (CRC) remains a major global health burden, necessitating more effective and selective therapeutic approaches. Nanocarrier-based drug delivery systems offer significant advantages by enhancing drug accumulation in tumors, reducing off-target toxicity, and overcoming resistance mechanisms. This review provides a comprehensive overview of recent advancements in nanocarriers for CRC therapy, including passive targeting the enhanced permeability and retention (EPR) effect, and active targeting strategies that exploit specific tumor markers using ligands such as antibodies, peptides, and aptamers.
View Article and Find Full Text PDFNano Lett
September 2025
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
Planar Josephson junctions (JJs) based on InSb nanoflags have recently emerged as an intriguing platform in superconducting electronics. The knowledge of the current-phase relationship (CPR) of such hybrid junctions is crucial for their applications. This letter presents the fabrication and investigation of superconducting quantum interference devices (SQUIDs) employing InSb nanoflag JJs.
View Article and Find Full Text PDFRSC Adv
September 2025
Computational Biotechnology, RWTH Aachen University Worringerweg 3 52074 Aachen Germany
Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine
Functional magnetic resonance imaging (fMRI) is a pivotal tool for mapping neuronal activity in the brain. Traditionally, the observed hemodynamic changes are assumed to reflect the activity of the most common neuronal type: excitatory neurons. In contrast, recent experiments, using optogenetic techniques, suggest that the fMRI-signal could reflect the activity of inhibitory interneurons.
View Article and Find Full Text PDFNat Commun
September 2025
Columbia University, Department of Psychology, New York, NY, USA.
Racial stereotypes have been shown to bias the identification of innocuous objects, making objects like wallets or tools more likely to be identified as weapons when encountered in the presence of Black individuals. One mechanism that may contribute to these biased identifications is a transient perceptual distortion driven by racial stereotypes. Here we provide neuroimaging evidence that a bias in visual representation due to automatically activated racial stereotypes may be a mechanism underlying this phenomenon.
View Article and Find Full Text PDF