98%
921
2 minutes
20
Background: Distinguishing benign from malignant sub-centimeter solid pulmonary nodules (SSPNs) continues to be challenging in clinical practice. Earlier diagnosis is crucial for improving patient survival and prognosis. This study aimed to investigate the risk factors of malignant SSPNs and establish and validate a prediction model based on computed tomography (CT) characteristics to assist in their early diagnosis.
Methods: A total of 261 consecutive participants with 261 SSPNs were retrospectively recruited between January 2012 and July 2023 from National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (Center 1), including 161 malignant lesions and 100 benign lesions. Patients were randomly assigned to the training set (n=183) and validation set (n=78) according to a 7:3 ratio. Malignant nodules were confirmed by pathology; and benign nodules were confirmed by follow-up or pathology. Clinical data and CT features were collected to estimate the independent predictors of malignancy of SSPN with multivariate logistic analysis. A clinical prediction model was subsequently established by logistic regression. Furthermore, an additional 69 consecutive patients with 69 SSPNs from The Fourth Hospital of Hebei Medical University (Center 2) between January 2022 and December 2022 were retrospectively included as an external cohort to validate the predictive efficacy of the model. The performance of the prediction model was assessed by sensitivity, specificity, and the area under the receiver operating characteristic curve.
Results: There were 113 (61.7%), 48 (61.5%) and 28 (40.6%) malignant SSPNs in the training, internal and external validation sets, respectively. Multivariate logistic analysis revealed four independent predictors of malignant SSPNs: tumor-lung interface (P=0.002), spiculation (P=0.04), air bronchogram (P=0.047), and invisible at the mediastinal window (P=0.003). The area under the curve (AUC) for the prediction model in the training set was 0.875 [95% confidence interval (CI): 0.818, 0.933]; and the sensitivity and specificity were 94.7% and 68.6%, respectively. The AUCs in the internal and external validation set were (0.781; 95% CI: 0.664, 0.897) and (0.873; 95% CI: 0.791, 0.955), respectively; the sensitivity and specificity were 66.7% and 83.3% for the internal validation data, and 100.0% and 61.0% for the external validation data, respectively.
Conclusions: The prediction model based on CT characteristics could be helpful for distinguishing malignant SSPNs from benign ones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320228 | PMC |
http://dx.doi.org/10.21037/jtd-23-1943 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453.
Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.
View Article and Find Full Text PDFJ Strength Cond Res
September 2025
Institute for Data Analysis and Process Design, ZHAW, Zurich, Switzerland; and.
Achermann, BB, Drewek, A, and Lorenzetti, SR. Acute effect of the bounce squat on ground reaction force at the turning point and barbell kinematics. J Strength Cond Res XX(X): 000-000, 2025-The free-weight back squat is a key exercise for developing lower-body strength, with variations that influence muscle activation and performance.
View Article and Find Full Text PDFJ Biomech Eng
September 2025
Texas Tech University Box 41021 Lubbock, TX 79409.
Wrist biomechanics remain incompletely understood due to the complexity of experimental measurements in this multi-bone joint system. Finite element analysis provides a powerful alternative for investigating internal variables such as carpal kinematics and displacement patterns. This technical brief compares two bone representation approaches, all-cortical versus cortical-trabecular, using two distinct finite element models developed from the same wrist CT dataset.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.
In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.
View Article and Find Full Text PDFCurr Atheroscler Rep
September 2025
Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 521 19th Street South-GSB 444, Birmingham, AL, 35233, USA.
Purpose Of Review: This review examines cardiovascular disease (CVD) risk prediction models relevant to older adults, a rapidly expanding population with elevated CVD risk. It discusses model characteristics, performance metrics, and clinical implications.
Recent Findings: Some models have been developed specifically for older adults, while several others consider a broader age range, including some older individuals.