98%
921
2 minutes
20
This study evaluated the impact of differential sowing windows and improved weed management strategies on weed dynamics, productivity, and economic viability of direct drum seeded rice (Oryza sativa L.) in the temperate agro-ecosystem of Kashmir. A two-year field experiment was conducted utilizing a split-plot design with two sowing dates (May 10 and June 3) as main plots and six weed management practices as sub-plots. The earlier sowing date (May 10) resulted in significantly enhanced leaf area index, crop growth rate, relative growth rate, net assimilation rate, and grain and straw yields compared to the later sowing (June 3). Among weed management treatments, four mechanized conoweedings (equivalent to weed-free conditions) and sequential application of bensulfuron methyl + pretilachlor (60 and 600 g a.i. ha) as pre-emergence followed by 2,4-D (0.75 kg a.i. ha) as post-emergence demonstrated superior efficacy in weed suppression and augmentation of crop growth parameters and yield attributes. These treatments also exhibited the lowest weed index and highest benefit-cost ratio. The May 10 sowing, coupled with efficacious weed control measures, significantly reduced weed density and biomass while concomitantly improving nutrient uptake and economic returns. The results indicate that adopting a May 10 sowing date for direct seeded rice, in conjunction with either four conoweedings or the aforementioned sequential herbicide application, can optimize agronomic productivity and economic profitability under the temperate conditions of Kashmir. The study aided in choosing the best sowing window and efficient weed management strategy for attaining higher productivity and profitability of direct seeded rice in temperate conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324889 | PMC |
http://dx.doi.org/10.1038/s41598-024-69519-9 | DOI Listing |
Appl Environ Microbiol
September 2025
Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Plant Health Institute of Montpellier, Montpellier, France.
pv. is a pathogen of rice responsible for bacterial leaf streak, a disease that can cause up to 32% yield loss. While it was first reported a century ago in Asia, its first report in Africa was in the 1980s.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, PR China. Electronic address:
As the weed Echinochloa phyllopogon has rapidly developed multi- and cross-resistance to several herbicides, we aimed to determine the mechanism underlying penoxsulam resistance in weeds. There was no target mutation in the tested population, and P450 enzyme activity was significantly higher in the penoxsulam-treated resistant population, confirming that non-target-site resistance was dominant. The antioxidant enzyme activity of the resistant population was higher than that of the sensitive population following the application of the penoxsulam and cleared HO faster.
View Article and Find Full Text PDFMitochondrial DNA B Resour
September 2025
Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, Tochigi, Japan.
We have sequenced the complete mitochondrial genome of the firefly Kiesenwetter, 1874 (Coleoptera, Lampyridae, Luciolinae) from Niigata Prefecture, Honshu, Japan, and inferred the Luciolinae phylogeny. The circular genome of 16,685 bp (GenBank accession number, LC677171) has a base composition of A (43.52%), C (13.
View Article and Find Full Text PDFPest Manag Sci
September 2025
Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada.
Background: Glyphosate resistance in Conyza canadensis (Canada fleabane) has been primarily attributed to non-target-site resistance (NTSR) mechanisms such as vacuolar sequestration, though these have not been formally elucidated. While a target-site mutation at EPSPS2 (P106S) was recently identified, it failed to account for many resistant cases. These findings underscore the need to re-evaluate the genetic basis of glyphosate resistance in this species.
View Article and Find Full Text PDF