Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We introduce a new workflow that relies heavily on chemical quantitative structure-retention relationship (QSRR) models to accelerate method development for micro/mini-scale high-throughput purification (HTP). This provides faster access to new active pharmaceutical ingredients (APIs) through high-throughput experimentation (HTE). By comparing fingerprint structural similarity (e.g., Tanimoto index) with small training data sets containing a few hundred diverse small molecule antagonists of a lipid metabolizing enzyme, we can predict retention time (RT) of new compounds. Machine learning (ML) helps to identify optimal separation conditions for purification without performing the traditional crude QC step involving ultrahigh performance liquid chromatography (UHPLC) analyses of each compound. This green-chemistry approach with the use of predictive tools reduces cost and significantly shortens the design-make-test (DMT) cycle of new drugs by way of HTE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318006 | PMC |
http://dx.doi.org/10.1021/acsmedchemlett.4c00145 | DOI Listing |