98%
921
2 minutes
20
Point Group (PG) symmetries play a fundamental role in many aspects of theoretical chemistry and computational materials science. With the objective to automatize the search of PG symmetry operations of generic atomic clusters, we present a new algorithm called Symmetry Operation FInder (SOFI). SOFI addresses the problem of identifying PG symmetry by framing it as a degenerate shape-matching problem, where the multiple solutions correspond to distinct symmetry operations. The developed algorithm is compared against three other algorithms dedicated to PG identification on a large set of atomic clusters. The results, along with some illustrative use cases, showcase the effectiveness of SOFI. The SOFI algorithm is released as part of the iterative rotations and assignments library, accessible at https://github.com/mammasmias/IterativeRotationsAssignments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0215689 | DOI Listing |
J Phys Chem A
September 2025
Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.
A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States.
The Slater-type F12 geminal length scales originally tuned for the second-order Mo̷ller-Plesset F12 method are too large for higher-order F12 methods formulated using the SP (diagonal fixed-coefficient spin-adapted) F12 ansatz. The new geminal parameters reported herein reduce the basis set incompleteness errors (BSIEs) of absolute coupled-cluster singles and doubles F12 correlation energies by a significant─and increase with the cardinal number of the basis─margin. The effect of geminal reoptimization is especially pronounced for the cc-pVZ-F12 basis sets (specifically designed for use with F12 methods) relative to their conventional aug-cc-pVZ counterparts.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
the University of Maryland, National Institute of Standards and Technology, University of Delaware, Department of Physics and Astronomy, Newark, Delaware 19716, USA and Joint Quantum Institute, College Park, Maryland 20742, USA.
We report lifetime measurements of the metastable 6d ^{2}D_{5/2} and 6d ^{2}D_{3/2} states of Ra^{+}. The measured lifetimes, τ_{5}=303.8(1.
View Article and Find Full Text PDFDalton Trans
September 2025
Section for Solid State and Theoretical Inorganic Chemistry, Institute of Inorganic Chemistry, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
A series of niobium oxyiodide compounds has recently been identified using a non-conventional reduction method. The continuation of these studies of heterogeneous solid-state reactions in a closed system has led to the crystallization and structural analysis of two novel compounds LiNbOI and NbOI(NbI). Both crystal structures are derived from the pentanuclear [NbO] cluster core and are expanded through the incorporation of additional niobium atoms, forming new [NbO] and [NbO] cluster cores.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan.
Desorption processes of HO molecules from AlO(HO) ( = 3, 5, 7) and AlO(HO)H ( = 4, 6, 8) clusters were investigated using gas-phase thermal desorption spectrometry to evaluate the HO storage capacity and mechanisms of aluminum oxide clusters. The clusters stored approximately 10 HO molecules at ∼300 K, depending on the size (), and released them upon heating. Even after heating to ∼1000 K, 2-4 HO molecules remained bound.
View Article and Find Full Text PDF