A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tailoring solid-state DNP methods to the study of α-synuclein LLPS. | LitMetric

Tailoring solid-state DNP methods to the study of α-synuclein LLPS.

Biophys Chem

Center for Quantum and Topological Systems, New York University Abu Dhabi, United Arab Emirates; Department of Chemistry, New York University Abu Dhabi, United Arab Emirates. Electronic address:

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dynamic Nuclear Polarization (DNP) is a technique that leverages the quantum sensing capability of electron spins to enhance the sensitivity of nuclear magnetic resonance (NMR) signals, especially for insensitive samples. Glassing agents play a crucial role in the DNP process by facilitating the transfer of polarization from the unpaired electron spins to the nuclear spins along with cryoprotection of biomolecules. DNPjuice comprising of glycerol-d/DO/HO has been extensively used for this purpose over the past two decades. Polyethylene glycol (PEG), also used as a cryoprotectant, is often used as a crowding agent in experimental setups to mimic cellular conditions, particularly the invitro preparation of liquid-liquid phase separated (LLPS) condensates. In this study, we investigate the efficacy of PEG as an alternative to glycerol in the DNP juice, critical for signal enhancement. The modified DNP matrix leads to high DNP enhancement which enables direct study of LLPS condensates by solid-state DNP methods without adding any external constituents. An indirect advantage of employing PEG is that the PEG signals appear at ∼72.5 ppm and are relatively well-separated from the aliphatic region of the protein spectra. Large cross-effect DNP enhancement is attained for C-glycine by employing the PEG-water mixture as a glassing agent and ASYMPOL-POK as the state-of-art polarizing agent, without any deuteration. The DNP enhancement and the buildup rates are similar to results obtained with DNP juice, conforming to that PEG serves as a good candidate for both inducing crowding and glassing agent in the study of LLPS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2024.107303DOI Listing

Publication Analysis

Top Keywords

dnp enhancement
12
dnp
10
solid-state dnp
8
dnp methods
8
electron spins
8
llps condensates
8
dnp juice
8
study llps
8
glassing agent
8
peg
5

Similar Publications