A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Zirconia and Crofer Joint Made by Reactive Air Brazing Using the Silver Base Paste and Cu-Ti Coating Layer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study proposes a method to enhance the airtightness of the joint between the ZrO and Crofer alloy using coating technology. With the aid of vacuum sputtering technology, a titanium-copper alloy layer with a thickness between 1.5 μm and 6 μm was first deposited on the surface of ZrO and Crofer, respectively. The chemical composition of the deposited reaction layer was 70.2 Cu and 29.8 Ti in at%. Then, using silver as the base material in the reactive air brazing (RAB) process, we explore the use of this material design to improve the microstructure and reaction mechanism of the joint surface between ceramics and metal, compare the effects of different pretreatment thicknesses on the microstructure, and evaluate its effectiveness through air tightness tests. The results show that a coating of Cu-Ti alloy on the ZrO substrate can significantly improve bonding between the Ag filler and ZrO. The Cu-Ti metallization layer on the ZrO substrate is beneficial to the RAB. After the brazing process, the coated Cu-Ti layers form suitable reaction interfaces between the filler, the metal, the filler, and the ceramic. In terms of coating layer thickness, the optimized 3 μm coated Cu-Ti alloy layer is achieved from the experiment. Melting and dissolving the Cu-Ti coated layer into the ZrO substrate results in a defect-free interface between the Ag-rich braze and the ZrO. The air tightness test result shows no leakage under 2 psig at room temperature for 28 h. The pressure condition can still be maintained even under high-temperature conditions of 600 °C for 24 h.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313304PMC
http://dx.doi.org/10.3390/ma17153822DOI Listing

Publication Analysis

Top Keywords

zro substrate
12
reactive air
8
air brazing
8
silver base
8
coating layer
8
zro crofer
8
alloy layer
8
layer thickness
8
air tightness
8
cu-ti alloy
8

Similar Publications