Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Side-scan sonar is a principal technique for subsea target detection, where the quantity of sonar images of seabed targets significantly influences the accuracy of intelligent target recognition. To expand the number of representative side-scan sonar target image samples, a novel augmentation method employing self-training with a Disrupted Student model is designed (DS-SIAUG). The process begins by inputting a dataset of side-scan sonar target images, followed by augmenting the samples through an adversarial network consisting of the DDPM (Denoising Diffusion Probabilistic Model) and the YOLO (You Only Look Once) detection model. Subsequently, the Disrupted Student model is used to filter out representative target images. These selected images are then reused as a new dataset to repeat the adversarial filtering process. Experimental results indicate that using the Disrupted Student model for selection achieves a target recognition accuracy comparable to manual selection, improving the accuracy of intelligent target recognition by approximately 5% over direct adversarial network augmentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315046 | PMC |
http://dx.doi.org/10.3390/s24155060 | DOI Listing |