A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-Adaptive Strategies-Based Higher-Order Quantum Genetic Algorithm for Agile Remote Sensing Satellite Scheduling Problem. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The agile remote sensing satellite scheduling problem (ARSSSP) for large-scale tasks needs to simultaneously address the difficulties of complex constraints and a huge solution space. Taking inspiration from the quantum genetic algorithm (QGA), a multi-adaptive strategies-based higher-order quantum genetic algorithm (MAS-HOQGA) is proposed for solving the agile remote sensing satellites scheduling problem in this paper. In order to adapt to the requirements of engineering applications, this study combines the total task number and the total task priority as the optimization goal of the scheduling scheme. Firstly, we comprehensively considered the time-dependent characteristics of agile remote sensing satellites, attitude maneuverability, energy balance, and data storage constraints and established a satellite scheduling model that integrates multiple constraints. Then, quantum register operators, adaptive evolution operations, and adaptive mutation transfer operations were introduced to ensure global optimization while reducing time consumption. Finally, this paper demonstrated, through computational experiments, that the MAS-HOQGA exhibits high computational efficiency and excellent global optimization ability in the scheduling process of agile remote sensing satellites for large-scale tasks, while effectively avoiding the problem that the traditional QGA has, namely low solution efficiency and the tendency to easily fall into local optima. This method can be considered for application to the engineering practice of agile remote sensing satellite scheduling for large-scale tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314994PMC
http://dx.doi.org/10.3390/s24154938DOI Listing

Publication Analysis

Top Keywords

agile remote
24
remote sensing
24
satellite scheduling
16
quantum genetic
12
genetic algorithm
12
sensing satellite
12
scheduling problem
12
large-scale tasks
12
sensing satellites
12
multi-adaptive strategies-based
8

Similar Publications