A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep learning solutions for inverse problems in advanced biomedical image analysis on disease detection. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inverse problems in biomedical image analysis represent a significant frontier in disease detection, leveraging computational methodologies and mathematical modelling to unravel complex data embedded within medical images. These problems include deducing the unknown properties of biological structures or tissues from the observed imaging data, presenting a unique challenge in decoding intricate biological phenomena. Regarding disease detection, this technique has played a critical role in optimizing diagnostic efficiency by extracting meaningful insights from different imaging modalities like molecular imaging, MRI, and CT scans. Inverse problems contribute to uncovering subtle abnormalities by employing iterative optimization techniques and sophisticated algorithms, enabling precise and early disease detection. Deep learning (DL) solutions have emerged as robust mechanisms for addressing inverse problems in biomedical image analysis, especially in disease recognition. Inverse problems involve reconstructing unknown structures or parameters from observed data, and the DL model excels in learning complex representations and mappings. This study develops a DL Solution for Inverse Problems in the Advanced Biomedical Image Analysis on Disease Detection (DLSIP-ABIADD) technique. The DLSIP-ABIADD technique exploits the DL approach to solve inverse problems and detect the presence of diseases on biomedical images. To solve the inverse problem, the DLSIP-ABIADD technique uses a direct mapping approach. Bilateral filtering (BF) is used for image preprocessing. Besides, the MobileNetv2 model derives feature vectors from the input images. Moreover, the Henry gas solubility optimization (HGSO) method is applied for optimal hyperparameter selection of the MobileNetv2 model. Furthermore, a bidirectional long short-term memory (BiLSTM) model is deployed to identify diseases in medical images. Extensive simulations have been involved to illustrate the better performance of the DLSIP-ABIADD technique. The experimentation outcomes stated that the DLSIP-ABIADD technique performs better than other models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637221PMC
http://dx.doi.org/10.1038/s41598-024-69415-2DOI Listing

Publication Analysis

Top Keywords

inverse problems
28
disease detection
20
dlsip-abiadd technique
20
biomedical image
16
image analysis
16
analysis disease
12
deep learning
8
learning solutions
8
inverse
8
problems
8

Similar Publications