A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Band Structure Engineering in 2D Metal-Organic Frameworks. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The design of 2D metal-organic frameworks (2D MOFs) takes advantage of the combination of the diverse electronic properties of simple organic ligands with different transition metal (TM) centers. The strong directional nature of the coordinative bonds is the basis for the structural stability and the periodic arrangement of the TM cores in these architectures. Here, direct and clear evidence that 2D MOFs exhibit intriguing energy-dispersive electronic bands with a hybrid character and distinct magnetic properties in the metal cores, resulting from the interactions between the TM electronic levels and the organic ligand π-molecular orbitals, is reported. Importantly, a method to effectively tune both the electronic structure of 2D MOFs and the magnetic properties of the metal cores by exploiting the electronic structure of distinct TMs is presented. Consequently, the ionization potential characteristic of selected TMs, particularly the relative energy position and symmetry of the 3d states, can be used to strategically engineer bands within specific metal-organic frameworks. These findings not only provide a rationale for band structure engineering in 2D MOFs but also offer promising opportunities for advanced material design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481395PMC
http://dx.doi.org/10.1002/advs.202404667DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
12
band structure
8
structure engineering
8
magnetic properties
8
properties metal
8
metal cores
8
electronic structure
8
electronic
5
engineering metal-organic
4
frameworks design
4

Similar Publications