Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Near-infrared (NIR) emitting phosphors draw much attention because they show great applicability and development prospects in many fields. Herein, a series of inverse spinel-type structured LiGaO phosphors with a high concentration of Cr activators is reported with a dual emission band covering NIR-I and II regions. Except for strong ionic exchange interactions such as Cr-Cr and Cr clusters, an intervalence charge transfer (IVCT) process between aggregated Cr ion pairs is proposed as the mechanism for the ~1210 nm NIR-II emission. Comprehensive structural and luminescence characterization points to IVCT between two Cr being induced by structural distortion and further enhanced by irradiation. Construction of the configurational energy level diagram enabled elucidation of this transition within the IVCT process. Therefore, this work provides insight into the emission mechanism within the high Cr concentration system, revealing a new design strategy for NIR-II emitting phosphors to promote its response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202412815 | DOI Listing |