Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Machine learning approaches for image analysis require extensive training datasets for an accurate analysis. This also applies to the automated analysis of electron microscopy data where training data are usually created by manual annotation. Besides nanoparticle shape and size distribution, their internal crystal structure is a major parameter to assess their nature and their physical properties. The automatic classification of ultrasmall gold nanoparticles (1-3 nm) by their crystallinity is possible after training a neural network with simulated HRTEM data. This avoids a human bias and the necessity to manually classify extensive particle sets as training data. The small size of these particles represents a significant challenge with respect to the question of internal crystallinity. The network was able to assign real particles imaged by HRTEM with high accuracy to the classes monocrystalline, polycrystalline, and amorphous after being trained with simulated datasets. The ability to adjust the simulation parameters opens the possibility to extend this procedure to other experimental setups and other types of nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302048 | PMC |
http://dx.doi.org/10.1039/d4na00266k | DOI Listing |