Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Large language models (LLMs) show promise in supporting differential diagnosis, but their performance is challenging to evaluate due to the unstructured nature of their responses and their accuracy compared to existing diagnostic tools is not well characterized. To assess the current capabilities of LLMs to diagnose genetic diseases, we benchmarked these models on 5,213 case reports using the Phenopacket Schema, the Human Phenotype Ontology and Mondo disease ontology. Prompts generated from each phenopacket were sent to seven LLMs, including four generalist models and three LLMs specialized for medical applications. The same phenopackets were used as input to a widely used diagnostic tool, Exomiser, in phenotype-only mode. The best LLM ranked the correct diagnosis first in 23.6% of cases, whereas Exomiser did so in 35.5% of cases. While the performance of LLMs for supporting differential diagnosis has been improving, it has not reached the level of commonly used traditional bioinformatics tools. Future research is needed to determine the best approach to incorporate LLMs into diagnostic pipelines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302616 | PMC |
http://dx.doi.org/10.1101/2024.07.22.24310816 | DOI Listing |