Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Under climatic warming, glaciers are becoming a secondary source of atmospheric contaminants originally released into the environment decades ago. This phenomenon has been well-documented for glaciers near emission sources. However, less is known about polar ice sheets and ice caps. Radionuclides are one of the contaminants that can be remobilised through ice melting and accumulate in cryoconite material on the surface of glaciers. To understand the cycling of radionuclides in polar glacial contexts, we evaluate the radioactivity of cryoconite samples from Flade Isblink, a High Arctic ice cap in northeast Greenland. The measured radioactivity is among the highest reported across the High Arctic and the highest from Greenland. The high variability observed among the samples is explained by considering the different macroscopic features of single cryoconite deposits. The radioactivity source is compatible with the stratospheric reservoir established during atmospheric nuclear tests and with weapons-grade fissile fuel, likely originating from Novaya Zemlya proving grounds. This study shows that the ability of cryoconite to accumulate radioactivity in remote areas is undisputed, highlighting the need for a deeper understanding of the remobilisation of radioactive species in polar glacial contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428132PMC
http://dx.doi.org/10.1021/acs.est.3c10755DOI Listing

Publication Analysis

Top Keywords

high arctic
12
arctic ice
8
ice cap
8
flade isblink
8
polar glacial
8
glacial contexts
8
radioactivity
5
ice
5
accumulation environmental
4
environmental radioactivity
4

Similar Publications

Seasonal quantification of aquatic macrophytes in small boreal lakes with multiscale remote sensing.

Sci Total Environ

September 2025

Environmental Change Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Finland.

Small lakes are common across the Boreal-Arctic zone. Due to shallowness and high shoreline-surface area ratios, they are abundant in aquatic macrophytes. Vegetated littoral zones have been suggested to count as wetlands when quantifying carbon sinks and sources, but the actual magnitude of aquatic vegetation is seldom quantified.

View Article and Find Full Text PDF

Permafrost degradation is accelerating across the Arctic, posing growing risks to cultural heritage (CH) sites. This study presents the first archipelago-scale hazard assessment of CH to retrogressive thaw slumps (RTS) and thermo-erosion gullies (TEG) in Svalbard, one of the fastest-warming regions globally. By overlaying recent RTS and TEG inventories with the spatial distribution of protected CH sites, we quantify hazard exposure for 55.

View Article and Find Full Text PDF

Many Arctic fishes experience prolonged periods of extreme cold and large thermal variation over both rapid and seasonal time scales which challenge critical physiological functions. In the central Canadian Arctic, we caught wild adult lake trout (Salvelinus namaycush) acclimatized to winter and summer temperatures to determine the extent to which they seasonally adjust cardiac thermal performance and adrenergic control. We assessed the intrinsic and maximum heart rate (f and f) of anaesthetised fish through cholinergic blockade and either adrenergic blockade (f) or stimulation (f) during acute warming.

View Article and Find Full Text PDF

Background: The rise in malignant hepatopancreatobiliary tumors disproportionately affects low- and middle-income countries (LMICs) due to systemic challenges. In 2023, the International Hepatopancreatobiliary Association (IHPBA) launched a relationship-building initiative to mitigate outcome disparities by increasing capacity and quality. This study aimed to understand the dynamics and value of such collaborations.

View Article and Find Full Text PDF

While under-ice submarine hydrothermal systems provide critical insights into extremophile adaptations, the ecological impacts of explosive volcanism on these ecosystems remain poorly constrained. We successfully detected evidence of hydrothermal activities and explosive volcanism at 85° E, the eastern volcanic zone, ultra-slow spreading Gakkel Ridge. Hydrothermal plume, surface sediments, and volcanic glass samples were systematically collected to investigate the diversity of microbial communities.

View Article and Find Full Text PDF