98%
921
2 minutes
20
A scalable platform to synthesize ultrathin heavy metals may enable high-efficiency charge-to-spin conversion for next-generation spintronics. Here, we report the synthesis of air-stable, epitaxially registered monolayer Pb underneath graphene on SiC (0001) by confinement heteroepitaxy (CHet). Diffraction, spectroscopy, and microscopy reveal that CHet-based Pb intercalation predominantly exhibits a mottled hexagonal superstructure due to an ordered network of Frenkel-Kontorova-like domain walls. The system's air stability enables spin torque ferromagnetic resonance (ST-FMR) measurements that demonstrate charge-to-spin conversion in graphene/Pb/ferromagnet heterostructures with a 1.5× increase in the effective field ratio compared to control samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c04075 | DOI Listing |
Nat Commun
August 2025
Institut für Physik, Johannes Gutenberg Universität Mainz, Mainz, Germany.
The origin and efficiency of charge-to-spin conversion, known as the Edelstein effect (EE), has been typically linked to spin-orbit coupling mechanisms, which require materials with heavy elements within a non-centrosymmetric environment. Here we demonstrate that the high efficiency of spin-charge conversion can be achieved even without spin-orbit coupling in the recently identified coplanar p-wave magnets. The non-relativistic Edelstein effect (NREE) in these magnets exhibits a distinct phenomenology compared to the relativistic EE, characterized by a strongly anisotropic response and an out-of-plane polarized spin density resulting from the spin symmetries.
View Article and Find Full Text PDFNat Commun
July 2025
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Low-symmetry two-dimensional (2D) topological materials such as MoTe host efficient charge-to-spin conversion (CSC) mechanisms that can be harnessed for novel electronic and spintronic devices. However, the nature of the various CSC mechanisms and their correlation with underlying crystal symmetries remain unsettled. In this work, we use local spin-sensitive electrochemical potential measurements to directly probe the spatially dependent nonequilibrium spin accumulation in MoTe flakes down to four atomic layers.
View Article and Find Full Text PDFNano Lett
May 2025
Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Bulk-boundary correspondence, a foundational principle underlying the electronic band structure and physical behavior of topological quantum materials, has been rigorously tested in topological systems that involve conserved charge currents. However, it remains unclear whether bulk-boundary correspondence should hold for nonconserved spin currents. We address this unresolved question by using spin-torque ferromagnetic resonance to accurately probe the charge-to-spin conversion efficiency in epitaxial thin films of a canonical topological insulator, BiSb.
View Article and Find Full Text PDFSci Adv
May 2025
Department of Physics, Keio University, Yokohama 223-8522, Japan.
Green materials for efficient charge-to-spin conversion are desired for common spintronic applications. Recent studies have documented the efficient generation of spin torque using spin-orbit interactions (SOIs); however, SOI use relies on the employment of rare metals such as platinum. Here, we demonstrate that a nanometer-thick gradient from silicon to aluminum, which consists of readily available elements from earth resources, can produce a spin torque as large as that of platinum despite the weak SOI of these compositions.
View Article and Find Full Text PDFAdv Mater
May 2025
Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
Spin-orbit torque (SOT) induced by current is a promising approach for electrical manipulation of magnetization in advancing next-generation memory and logic technologies. Conventional SOT-driven perpendicular magnetization switching typically requires an external magnetic field for symmetry breaking, limiting practical applications. Recent research has focused on achieving field-free switching through out-of-plane SOT, with the key challenge being the exploration of new spin source materials that can generate z-polarized spins with high charge-to-spin conversion efficiency, structural simplicity, and scalability for large-scale production.
View Article and Find Full Text PDF