98%
921
2 minutes
20
Intestinal microbiota and selected strains of commensal bacteria influence regulatory T (Treg) cell functionality in the colon. Nevertheless, whether and how microbiota changes the transcriptome profile and TCR specificities of colonic Tregs remain to be precisely defined. In this study, we have employed single-cell RNA sequencing and comparatively analyzed colonic Tregs from specific pathogen-free and germ-free (GF) mice. We found that microbiota shifts the activation trajectory of colonic Tregs toward a distinct phenotypic subset enriched in specific pathogen-free but not in GF mice. Moreover, microbiota induced the expansion of specific Treg clonotypes with shared transcriptional specificities. The microbiota-induced subset of colonic Tregs, identified as PD-1- CXCR3+ Tregs, displayed enhanced suppressive capabilities compared with colonic Tregs derived from GF mice, enhanced production of IL-10, and were the primary regulators of enteric inflammation in dextran sodium sulfate-induced colitis. These findings identify a hitherto unknown gut microbiota and immune cell interaction module that could contribute to the development of a therapeutic modality for intestinal inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.2300395 | DOI Listing |
J Exp Med
November 2025
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
Host-pathogen interactions involve two critical strategies: resistance, whereby hosts clear invading microbes, and tolerance, whereby hosts carry high pathogen burden asymptomatically. Here, we investigate mechanisms by which Salmonella-superspreader (SSP) hosts maintain an asymptomatic state during chronic infection. We found that regulatory T cells (Tregs) are essential for this disease-tolerant state, limiting intestinal immunopathology and enabling SSP hosts to thrive, while facilitating Salmonella transmission.
View Article and Find Full Text PDFJCI Insight
September 2025
Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, and.
Steroid-refractory gut acute graft-versus-host disease (SR-Gut-aGVHD) is the major cause of nonrelapse death after allogeneic hematopoietic cell transplantation. High numbers of donor-type IL-22+ T cells, IL-22-dependent dysbiosis, and loss of antiinflammatory CX3CR1hi mononuclear phagocytes (MNPs) play critical roles in SR-Gut-aGVHD pathogenesis. CEACAM1 on intestinal epithelial cells (IECs) is proposed to regulate bacterial translocation and subsequent immune responses in the intestine.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell The
Despite its potential as a cancer immunotherapy, wild-type IL-2 is limited by dose-limiting toxicities, including vascular leak syndrome, and its strong activation of regulatory T cells (Tregs), which dampens anti-tumor immunity. These drawbacks are largely driven by IL-2's binding to IL-2Rα, and avoiding this interaction can reduce IL-2-associated toxicities, although it cannot completely eliminate them. To overcome these limitations, βγ-biased IL-2 variants (Non-α-IL-2) have been developed to selectively activate effector T and NK cells.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
To examine the effect of early-life infection with on the development of oral tolerance, we developed a low-dose infection model in neonatal mice. infection in neonatal mice results in immunopathology in the colon. IL-1β released during infection blocked the formation of colonic goblet cell associated antigen passages, which normally serve as a conduit for antigen uptake and development of peripheral regulatory T cells (pTregs), responsible for long-term oral tolerance.
View Article and Find Full Text PDFCurr Med Chem
August 2025
Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
Introduction: Centromere protein M (CENPM), a member of the CENP family, is correlated with several malignancies, but its role in colon adenocarcinoma (COAD) is unclear. This study aims to explore the expression, prognostic significance, and biological role of CENPM in COAD.
Methods: The association of CENPM with the occurrence and progression of COAD was thoroughly analyzed via several bioinformatics databases.