A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ferroptosis and inflammation are modulated by the NFIL3-ACSL4 axis in sepsis associated-acute kidney injury. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sepsis-associated acute kidney injury (SA-AKI) increases the risk of death in patients with sepsis, and its major pathological change is the death of renal tubular cells. However, the mechanism of its occurrence remains unclear. Sepsis can lead to circadian dysregulation, and the rhythm gene NFIL3 has been reported to regulate lipid metabolism. There is compelling evidence that has demonstrated that lipid peroxidation can cause cellular ferroptosis. In this study, we established the in vitro and in vivo models of SA-AKI and confirmed the presence of ferroptosis of the renal tubular epithelial cells in SA-AKI. In addition, analysis of the GEO database showed that NFIL3 was highly expressed in sepsis patients and was highly correlated with the key molecule of ferroptosis, ACSL4. The in vitro and in vivo data suggested that NFIL3 was involved in ferroptosis and inflammation in SA-AKI. Subsequently, loss-of-function experiments revealed that NFIL3 knockdown attenuated ferroptosis and inflammation in renal tubular epithelial cells by downregulating ACSL4 expression, thus protecting SA-AKI. In conclusion, this study is the first to illustrate the involvement of the rhythm gene NFIL3 in SA-AKI, providing new insights and potential therapeutic targets for SA-AKI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297963PMC
http://dx.doi.org/10.1038/s41420-024-02113-0DOI Listing

Publication Analysis

Top Keywords

ferroptosis inflammation
12
renal tubular
12
kidney injury
8
rhythm gene
8
gene nfil3
8
vitro vivo
8
tubular epithelial
8
epithelial cells
8
sa-aki
7
ferroptosis
6

Similar Publications